Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(19): 56731-56742, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36929264

RESUMEN

During the present century, plant-based zinc oxide nanoparticles (ZnO-NPs) are exploited extensively for their vast biological properties due to their unique characteristic features and eco-friendly nature. Diabetes is one of the fast-growing human diseases/abnormalities worldwide, and the need for new/ novel antiglycation products is the need of the hour. The study deals with the phyto-fabrication of ZnO-NPs from Boerhaavia erecta, a medicinally important plant, and to evaluate their antioxidant and antiglycation ability in vitro. UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterize the phyto-fabricated ZnO-NPs. The characterization of nanoparticles revealed that the particles showed an absorption peak at 362 nm and band gap energy of 3.2 eV, approximately 20.55 nm in size, with a ZnO elemental purity of 96.61%. The synthesized particles were found agglomerated when observed under SEM, and the FT-IR studies proved that the phyto-constituents of the extract involved during the different stages (reduction, capping, and stabilization) of nanoparticles synthesis. The antioxidant and metal chelating activities confirmed that ZnO-NPs could inhibit the free radicals generated, which was dose-dependent with an IC50 value between 1.81 and 1.94 mg mL-1, respectively. In addition, the phyto-fabricated nanoparticles blocked the formation of advanced glycation end products (AGEs) as noticed through inhibition of Amadori products, trapping of reactive dicarbonyl intermediate and breaking the cross-link of glycated protein. It was also noted that the phyto-fabricated ZnO-NPs significantly prevented the damage of red blood corpuscles (RBCs) induced by MGO. The present study's findings will provide an experimental basis for exploring ZnO-NPs in diabetes-related complications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Humanos , Óxido de Zinc/química , Antibacterianos/química , Antioxidantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Difracción de Rayos X , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nanopartículas del Metal/química
3.
Sci Rep ; 12(1): 22446, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575224

RESUMEN

Cladosporium spp. have been reported for their great diversity of secondary metabolites which represent as a prominent base material for verifying the biological activities. Several bioactive compounds which have antimicrobial, cytotoxic, quorum sensing inhibitory and phytotoxic activities have been isolated from Cladosporium species. Most of them are still needed to be explored for their anticancer properties. Therefore, the present study is focused on screening and identifying the bioactive compounds of Cladosporium spp. for their anticancer activity via the integrated approaches of Molecular Docking (MD), Molecular Dynamics Simulation (MDS) and Density Functional Theory (DFT) studies. A total of 123 bioactive compounds of Cladosporium spp. were explored for their binding affinity with the selected breast cancer drug target receptor such as estrogen receptor alpha (PDB:6CBZ). The Molecular Docking studies revealed that amongst the bioactive compounds screened, Altertoxin X and Cladosporol H showed a good binding affinity of - 10.5 kcal/mol and - 10.3 kcal/mol, respectively, with the estrogen receptor alpha when compared to the reference compound (17[Formula: see text]-Estradiol: - 10.2 kcal/mol). The MDS study indicated the stable binding patterns and conformation of the estrogen receptor alpha-Altertoxin X complex in a stimulating environment. In addition, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) study suggested that Altertoxin X has a good oral bioavailability with a high LD[Formula: see text] value of 2.375 mol/kg and did not cause any hepatotoxicity and skin sensitization. In summary, the integrated approaches revealed that Altertoxin X possesses a promising anticancer activity and could serve as a new therapeutic drug for breast cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Simulación del Acoplamiento Molecular , Cladosporium , Receptor alfa de Estrógeno , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química
4.
PLoS One ; 17(10): e0275432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36201520

RESUMEN

Breast cancer is the second most common malignancy in females worldwide and poses a great challenge that necessitates the identification of novel therapeutic agents from several sources. This research aimed to study the molecular docking and molecular dynamics simulations of four proteins (such as PDB: 6CBZ, 1FDW, 5GWK and 2WTT) with the selected phytochemicals from Withania somnifera to identify the potential inhibitors for breast cancer. The molecular docking result showed that among 44 compounds, two of them, Ashwagandhanolide and Withanolide sulfoxide have the potential to inhibit estrogen receptor alpha (ERα), 17-beta-hydroxysteroid -dehydrogenase type 1 (17ß-HSD1), topoisomerase II alpha (TOP2A) and p73 tetramerization domain that are expressed during breast cancer. The molecular dynamics (MD) simulations results suggested that Ashwagandhanolide remained inside the binding cavity of four targeted proteins and contributed favorably towards forming a stable protein-ligand complex throughout the simulation. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties confirmed that Ashwagandhanolide is hydrophobic and has moderate intestinal permeability, good intestinal absorption, and poor skin permeability. The compound has a relatively low VDss value (-1.652) and can be transported across ABC transporter and good central nervous system (CNS) permeability but did not easily cross the blood-brain barrier (BBB). This compound does not possess any mutagenicity, hepatotoxicity and skin sensitization. Based on the results obtained, the present study highlights the anticancer potential of Ashwagandhanolide, a compound from W. somnifera. Furthermore, in vitro and in vivo studies are necessary to perform before clinical trials to prove the potentiality of Ashwagandhanolide.


Asunto(s)
Neoplasias , Withania , Witanólidos , Transportadoras de Casetes de Unión a ATP , ADN-Topoisomerasas de Tipo II , Sistemas de Liberación de Medicamentos , Ergosterol/análogos & derivados , Receptor alfa de Estrógeno , Hidroxiesteroides , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sulfóxidos , Withania/química , Witanólidos/farmacología
5.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36111369

RESUMEN

Cancer prevalence is rising rapidly around the globe, contributing immensely to the burden on health systems, hence the search for more effective and selective treatments still remains enticing. Whey, as a natural source, has received extensive focus in recent years because of its intriguing applications to health benefits. Growing consumer appreciation of the nutraceutical effects of whey components makes them an attractive field within cancer research. Whey is a valuable source of superior-quality proteins, lactose, vitamins, and minerals that contribute to proper nutrition as well as help hamper illness and even complement certain disease-related therapy prognosis. As a result, industry leaders and dairy producers are devising new ways to valorize it. Great emphasis on cancer prevention and treatment has been given to whey protein (WP) by the scientific community. WP intake has been proven to induce anti-cancer effects in various in vitro and in vivo studies. Nutritionists and dietitians are now enormously endorsing the role of WP in the therapeutic field, notably for cancer cachexia management. However, human intervention studies with WP are in their infancy and remain to be established with different tumor entities to provide valid proof of its ability to act as a coadjuvant in cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...