Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hepatology ; 74(6): 3127-3145, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34331779

RESUMEN

BACKGROUND AND AIMS: The hepatic mitogen-activated protein kinase (MAPK) cascade leading to c-Jun N-terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. APPROACH AND RESULTS: In mice fed high-fat, high-calorie, high-fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control-antisense oligonucleotide (control-ASO) developed steatohepatitis and fibrosis, which was prevented by Sab-ASO treatment. Phosphorylated JNK (p-JNK) and phosphorylated ATF2 (p-ATF2) were markedly attenuated by Sab-ASO treatment. After 52 weeks of HFHC feeding, control N-acetylgalactosamine antisense oligonucleotide (GalNAc-Ctl-ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc-Sab-ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p-ATF2, and p-JNK to chow-fed levels. CONCLUSIONS: Hepatic SAB expression increases in HFHC diet-fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte-targeted GalNAc-Sab-ASO treatment reversed steatohepatitis and fibrosis.


Asunto(s)
Cirrosis Hepática/patología , Proteínas de la Membrana/metabolismo , Síndrome Metabólico/patología , Proteínas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Hepatocitos/patología , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Cultivo Primario de Células
2.
Adv Exp Med Biol ; 1238: 23-37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32323178

RESUMEN

Over the last few decades, intestinal microbial communities have been considered to play a vital role in host liver health. Acute liver injury (ALI) is the manifestation of sudden hepatic injury and arises from a variety of causes. The studies of dysbiosis in gut microbiota provide new insight into the pathogenesis of ALI. However, the relationship of gut microbiota and ALI is not well understood, and the contribution of gut microbiota to ALI has not been well characterized. In this chapter, we integrate several major pathogenic factors in ALI with the role of gut microbiota to stress the significance of gut microbiota in prevention and treatment of ALI.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Hepatopatías/prevención & control , Hepatopatías/terapia , Hígado/lesiones , Hígado/patología , Enfermedad Aguda/terapia , Humanos
3.
J Clin Invest ; 129(12): 5278-5293, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31487267

RESUMEN

SH3 domain-binding protein that preferentially associates with Btk (SAB) is an outer-membrane docking protein for JNK-mediated impairment of mitochondrial function. Deletion of Sab in hepatocytes inhibits sustained JNK activation and cell death. The current study demonstrates that an increase in SAB expression enhanced the severity of acetaminophen-induced (APAP-induced) liver injury. Female mice were resistant to liver injury and exhibited markedly decreased hepatic SAB protein expression compared with male mice. The mechanism of SAB repression involved a pathway from ERα to p53 expression that induced miR34a-5p. miR34a-5p targeted the Sab mRNA coding region, thereby repressing SAB expression. Fulvestrant or p53 knockdown decreased miR34a-5p and increased SAB expression in female mice, leading to increased injury from APAP and TNF/galactosamine. In contrast, an ERα agonist increased p53 and miR34a-5p, which decreased SAB expression and hepatotoxicity in male mice. Hepatocyte-specific deletion of miR34a also increased the severity of liver injury in female mice, which was prevented by GalNAc-ASO knockdown of Sab. Similar to mice, premenopausal women expressed elevated levels of hepatic p53 and low levels of SAB, whereas age-matched men expressed low levels of p53 and high levels of SAB, but there was no difference in SAB expression between the sexes in the postmenopausal stage. In conclusion, SAB expression levels determined the severity of JNK-dependent liver injury. Female mice expressed low levels of hepatic SAB protein because of the ERα/p53/miR34a pathway, which repressed SAB expression and accounted for the resistance to liver injury seen in these females.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/metabolismo , Fallo Hepático Agudo/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Acetaminofén , Animales , Apoptosis , Muerte Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Mitocondrias Hepáticas/metabolismo , Necrosis , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Hepatology ; 70(4): 1457-1469, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30924946

RESUMEN

Despite tremendous research advancements in nonalcoholic fatty liver disease (NAFLD), our understanding of sex differences in NAFLD remains insufficient. This review summarizes the current knowledge on sex differences in NAFLD, identifies gaps, and discusses important considerations for future research. The prevalence and severity of NAFLD are higher in men than in women during the reproductive age. However, after menopause, NAFLD occurs at a higher rate in women, suggesting that estrogen is protective. Sex differences also exist for the major risk factors of NAFLD. In general, animal models of NAFLD recapitulate the sex differences observed in patients, with more severe steatosis and steatohepatitis, more proinflammatory/profibrotic cytokines, and a higher incidence of hepatic tumors in male than female subjects. Based on computer modeling, female and male livers are metabolically distinct with unique regulators modulating sex-specific metabolic outcomes. Analysis of the literature reveals that most published clinical and epidemiological studies fail to examine sex differences appropriately. Considering the paucity of data on sex differences and the knowledge that regulators of pathways relevant to current therapeutic targets for NAFLD differ by sex, clinical trials should be designed to test drug efficacy and safety according to sex, age, reproductive stage (i.e., menopause), and synthetic hormone use. Conclusion: Sex differences do exist in the prevalence, risk factors, fibrosis, and clinical outcomes of NAFLD, suggesting that, while not yet incorporated, sex will probably be considered in future practice guidelines; adequate consideration of sex differences, sex hormones/menopausal status, age, and other reproductive information in clinical investigation and gene association studies of NAFLD are needed to fill current gaps and implement precision medicine for patients with NAFLD.


Asunto(s)
Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/patología , Caracteres Sexuales , Adulto , Animales , Investigación Biomédica , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Pronóstico , Medición de Riesgo , Índice de Severidad de la Enfermedad , Distribución por Sexo
5.
Cell Death Dis ; 8(6): e2903, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28661486

RESUMEN

c-Jun N-terminal kinase (JNK) mediates hepatotoxicity through interaction of its phospho-activated form with a mitochondrial outer membrane protein, Sh3bp5 or Sab, leading to dephosphorylation of intermembrane Src and consequent impaired mitochondrial respiration and enhanced ROS release. ROS production from mitochondria activates MAP3 kinases, such as MLK3 and ASK1, which continue to activate a pathway to sustain JNK activation, and amplifies the toxic effect of acetaminophen (APAP) and TNF/galactosamine (TNF/GalN). Downstream of MAP3K, in various contexts MKK4 activates both JNK and p38 kinases and MKK7 activates only JNK. The relative role of MKK4 versus 7 in liver injury is largely unexplored, as is the potential role of p38 kinase, which might be a key mediator of toxicity in addition to JNK. Antisense oligonucleotides (ASO) to MKK4, MKK7 and p38 (versus scrambled control) were used for in vivo knockdown, and in some experiments PMH were used after in vivo knockdown. Mice were treated with APAP or TNF/GalN and injury assessed. MKK4 and MKK7 were expressed in liver and each was efficiently knocked down with two different ASOs. Massive liver injury and ALT elevation were abrogated by MKK4 but not MKK7 ASO pretreatment in both injury models. The protection was confirmed in PMH. Knockdown of MKK4 completely inhibited basal P-p38 in both cytoplasm and mitochondria. However, ALT levels and histologic injury in APAP-treated mice were not altered with p38 knockdown versus scrambled control. p38 knockdown significantly increased P-JNK levels in cytoplasm but not mitochondria after APAP treatment. In conclusion, MKK4 is the major MAP2K, which activates JNK in acute liver injury. p38, the other downstream target of MKK4, does not contribute to liver injury from APAP or TNF/galactosamine.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Acetaminofén/administración & dosificación , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Galactosamina/administración & dosificación , Técnicas de Silenciamiento del Gen , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , MAP Quinasa Quinasa 7/antagonistas & inhibidores , MAP Quinasa Quinasa 7/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/patología , Proteínas Mitocondriales/genética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...