Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(2): e10929, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333094

RESUMEN

Globally, biodiversity is declining due to habitat loss and degradation, over-exploitation, climate change, invasive species, pollution, and infrastructure development. These threats affect the populations of large waterbird species, such as Sarus crane (Grus antigone), which inhabits agricultural-wetland ecosystems. Despite the burgeoning built-up areas and diminishing agricultural and wetland spaces, scant research investigates the impact of these changing land uses on the globally vulnerable Sarus crane in Nepal. During the pre-breeding season from April to June 2023, our comprehensive study meticulously scrutinized Sarus crane population status and factors associated with the occurrences and conservation challenges across 10 specific districts of Nepal. Our study documented a total of 690 individuals of Sarus cranes in five districts. The Lumbini Province has 685 individuals, occupying 11 roosting sites. Conversely, the remaining five districts have no Sarus cranes presence during this period. Wetland, farmland and built-up areas exhibited a significantly positive influence on Sarus crane occurrences in the Lumbini Province. Additionally, we recorded 47 fatalities of Sarus cranes over the past 13 years in the Lumbini Province due to electrocution and collisions. Our study provides a baseline dataset crucial for developing conservation policies, particularly during the dry season when Sarus crane populations tend to congregate in larger flocks. The adaptation of the Sarus crane to urbanized landscapes exposes them to several anthropogenic threats in the coming days. Therefore, protecting wetlands and farmland areas and adopting transboundary conservation approaches are imperative for the long-term conservation of the Sarus crane and its habitat.

2.
PLoS One ; 18(1): e0280824, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36696434

RESUMEN

Healthy natural forests maintain and/or enhances carbon stock while also providing potential habitat and an array of services to wildlife including large carnivores such as the tiger. This study is the first of its kind in assessing relationships between above-ground biomass carbon stock, tiger density and occupancy probability and its status in protected areas, corridors, and forest connectivity blocks. The dataset used to assess the relationship were: (1) Converged posterior tiger density estimates from camera trap data derived from Bayesian- Spatially Explicit Capture-Recapture model from Chitwan National Park; (2) Site wise probability of tiger occupancy estimated across the Terai Arc Landscape and (3) Habitat wise above-ground biomass carbon stock estimated across the Terai Arc Landscape. Carbon stock maps were derived based on eight habitat classes and conservation units linking satellite (Landsat 7 ETM+) images and field collected sampling data. A significant negative relationship (r = -0.20, p<0.01) was observed between above-ground biomass carbon stock and tiger density in Chitwan National Park and with tiger occupancy (r = -0.24, p = 0.023) in the landscape. Within protected areas, we found highest mean above-ground biomass carbon stock in high density mixed forest (~223 tC/ha) and low in degraded scrubland (~73.2 tC/ha). Similarly, we found: (1) highest tiger density ~ 0.06 individuals per 0.33 km2 in the riverine forest and lowest estimates (~0.00) in degraded scrubland; and (2) predictive tiger density of 0.0135 individuals per 0.33 km2 is equivalent to mean total of 43.7 tC/ha in Chitwan National Park. Comparatively, we found similar above-ground biomass carbon stock among corridors, large forest connectivity blocks (~117 tC/ha), and within in tiger bearing protected areas (~119 tC/ha). Carbon conservation through forest restoration particularly in riverine habitats (forest and grassland) and low transitional state forests (degraded scrubland) provides immense opportunities to generate win-win solutions, sequester more carbon and maintain habitat integrity for tigers and other large predators.


Asunto(s)
Tigres , Humanos , Animales , Biomasa , Densidad de Población , Carbono , Nepal , Teorema de Bayes , Conservación de los Recursos Naturales , Ecosistema , Bosques
3.
Ecol Evol ; 12(12): e9600, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514544

RESUMEN

Anthropogenic land-use change continues to be predicated as a major driver of terrestrial biodiversity loss for the rest of this century. It has been determined that the effect of climate change on wildlife population will accelerate the rate and process of decline of global vertebrate populations. We investigated wildlife composition, occupancy, and activity pattern along the larger climate resilient forests that serve as microrefugia for a wide range of species under the escalating climate change. We used camera trap survey covering 250 km2 of climate microrefugia in Dadeldhura hills in far western region of Nepal. We used 62 trapping locations accumulating 1800 trap nights taking 98,916 photographs in 62 days-survey period during the summer season of 2020. We photographed 23 mammalian species with estimated species richness of 30 species (95% CI: 25-34) based on multi-species occupancy model. We estimated overall species occupancy ψ(SE(ψ)) to be 0.87 (0.09) in climatic microrefugia. While human activity predominated throughout the day, the majority of animals was found to exhibit nocturnal temporal patterns. Tiger and hyaena, two of the top predators, were newly discovered in the western Himalayan range of Nepal, with their discovery at the 34 highest elevations of 2511 meters and 2000m, respectively. In Nepal, high-altitude tiger range is characterized by tiger distribution above a 2000 m cutoff representing habitats in the physiographic zone of high mountains and above. Our findings establish a baseline and show that the climatic microrefugia that have been identified have high levels of species richness and occupancy, which characterize the Dadeldhura hill forest ranges as biologically varied and ecologically significant habitat. These areas identified as climatic microrefugia habitats should be the focus of conservation efforts, particularly efforts to reduce human disturbance and adapt to climate change.

4.
PLoS One ; 15(12): e0243450, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33306732

RESUMEN

The Himalayan red panda is an endangered mammal endemic to Eastern Himalayan and South Western China. Data deficiency often hinders understanding of their spatial distribution and habitat use, which is critical for species conservation planning. We used sign surveys covering the entire potential red panda habitat over 22,453 km2 along the mid-hills and high mountains encompassing six conservation complexes in Nepal. To estimate red panda distribution using an occupancy framework, we walked 1,451 km along 446 sampled grid cells out of 4,631 grid cells in the wet season of 2016. We used single-species, single-season models to make inferences regarding covariates influencing detection and occupancy. We estimated the probability of detection and occupancy based on model-averaging techniques and drew predictive maps showing site-specific occupancy estimates. We observed red panda in 213 grid cells and found covariates such as elevation, distance to water sources, and bamboo cover influencing the occupancy. Red panda detection probability [Formula: see text] estimated at 0.70 (0.02). We estimated red panda site occupancy (sampled grid cells) and landscape occupancy (across the potential habitat) [Formula: see text] at 0.48 (0.01) and 0.40 (0.02) respectively. The predictive map shows a site-specific variation in the spatial distribution of this arboreal species along the priority red panda conservation complexes. Data on their spatial distribution may serve as a baseline for future studies and are expected to aid in species conservation planning in priority conservation complexes.


Asunto(s)
Ailuridae/fisiología , Animales , Conservación de los Recursos Naturales , Ecosistema , Nepal , Estaciones del Año
5.
PLoS One ; 12(10): e0178797, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29020020

RESUMEN

In Nepal, the red panda (Ailurus fulgens) has been sparsely studied, although its range covers a wide area. The present study was carried out in the previously untapped Chitwan-Annapurna Landscape (CHAL) situated in central Nepal with an aim to explore current distributional status and identify key habitat use. Extensive field surveys conducted in 10 red panda range districts were used to estimate species distribution by presence-absence occupancy modeling and to predict distribution by presence-only modeling. The presence of red pandas was recorded in five districts: Rasuwa, Nuwakot, Myagdi, Baglung and Dhading. The predictive distribution model indicated that 1,904.44 km2 of potential red panda habitat is available in CHAL with the protected area covering nearly 41% of the total habitat. The habitat suitability analysis based on the probability of occurrence showed only 16.58% (A = 315.81 km2) of the total potential habitat is highly suitable. Red Panda occupancy was estimated to be around 0.0667, indicating nearly 7% (218 km2) of the total habitat is occupied with an average detection probability of 0.4482±0.377. Based on the habitat use analysis, altogether eight variables including elevation, slope, aspect, proximity to water sources, bamboo abundance, height, cover, and seasonal precipitation were observed to have significant roles in the distribution of red pandas. In addition, 25 tree species were documented from red panda sign plots out of 165 species recorded in the survey area. Most common was Betula utilis followed by Rhododendron spp. and Abies spectabilis. The extirpation of red pandas in previously reported areas indicates a need for immediate action for the long-term conservation of this species in CHAL.


Asunto(s)
Ecosistema , Dinámica Poblacional , Ursidae/fisiología , Animales , Geografía , Nepal , Probabilidad
6.
PLoS One ; 12(6): e0177548, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28591175

RESUMEN

The source populations of tigers are mostly confined to protected areas, which are now becoming isolated. A landscape scale conservation strategy should strive to facilitate dispersal and survival of dispersing tigers by managing habitat corridors that enable tigers to traverse the matrix with minimal conflict. We present evidence for tiger dispersal along transboundary protected areas complexes in the Terai Arc Landscape, a priority tiger landscape in Nepal and India, by comparing camera trap data, and through population models applied to the long term camera trap data sets. The former showed that 11 individual tigers used the corridors that connected the transboundary protected areas. The estimated population growth rates using the minimum observed population size in two protected areas in Nepal, Bardia National Park and Suklaphanta National Park showed that the increases were higher than expected from growth rates due to in situ reproduction alone. These lines of evidence suggests that tigers are recolonizing Nepal's protected areas from India, after a period of population decline, and that the tiger populations in the transboundary protected areas complexes may be maintained as meta-population. Our results demonstrate the importance of adopting a landscape-scale approach to tiger conservation, especially to improve population recovery and long term population persistence.


Asunto(s)
Conservación de los Recursos Naturales , Dinámica Poblacional , Tigres/fisiología , Animales , Ecosistema , India , Modelos Teóricos , Nepal , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...