Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 15(6): e0009533, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34185780

RESUMEN

Visceral leishmaniasis is a vector-borne protozoan infection that is fatal if untreated. There is no vaccination against the disease, and the current chemotherapeutic agents are ineffective due to increased resistance and severe side effects. Buparvaquone is a potential drug against the leishmaniases, but it is highly hydrophobic resulting in poor bioavailability and low therapeutic efficacy. Herein, we loaded the drug into silicon nanoparticles produced from barley husk, which is an agricultural residue and widely available. The buparvaquone-loaded nanoparticles were several times more selective to kill the intracellular parasites being non-toxic to macrophages compared to the pure buparvaquone and other conventionally used anti-leishmanial agents. Furthermore, the in vivo results revealed that the intraperitoneally injected buparvaquone-loaded nanoparticles suppressed the parasite burden close to 100%. By contrast, pure buparvaquone suppressed the burden only by 50% with corresponding doses. As the conclusion, the biogenic silicon nanoparticles are promising carriers to significantly improve the therapeutic efficacy and selectivity of buparvaquone against resistant visceral leishmaniasis opening a new avenue for low-cost treatment against this neglected tropical disease threatening especially the poor people in developing nations.


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmania donovani/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Nanopartículas/administración & dosificación , Naftoquinonas/uso terapéutico , Animales , Antiprotozoarios/administración & dosificación , Portadores de Fármacos , Femenino , Hordeum , Inyecciones Intraperitoneales , Macrófagos/efectos de los fármacos , Ratones Endogámicos BALB C , Naftoquinonas/administración & dosificación , Naftoquinonas/efectos adversos , Silicio/química
2.
ACS Appl Mater Interfaces ; 12(42): 47233-47244, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32970405

RESUMEN

Complex experimental design is a common problem in the preparation of theranostic nanoparticles, resulting in poor reaction control, expensive production cost, and low experiment success rate. The present study aims to develop PEGylated bismuth (PEG-Bi) nanoparticles with a precisely controlled one-pot approach, which contains only methoxy[(poly(ethylene glycol)]trimethoxy-silane (PEG-silane) and bismuth oxide (Bi2O3). A targeted pyrolysis of PEG-silane was achieved to realize its roles as both the reduction and PEGylation agents. The unwanted methoxy groups of PEG-silane were selectively pyrolyzed to form reductive agents, while the useful PEG-chain was fully preserved to enhance the biocompatibility of Bi nanoparticles. Moreover, Bi2O3 not only acted as the raw material of the Bi source but also presented a self-promotion in the production of Bi nanoparticles via catalyzing the pyrolysis of PEG-silane. The reaction mechanism was systematically validated with different methods such as nuclear magnetic resonance spectroscopy. The PEG-Bi nanoparticles showed better compatibility and photothermal conversion than those prepared by the complex multiple step approaches in literature studies. In addition, the PEG-Bi nanoparticles possessed prominent performance in X-ray computed tomography imaging and photothermal cancer therapy in vivo. The present study highlights the art of precise reaction control in the synthesis of PEGylated nanoparticles for biomedical applications.


Asunto(s)
Bismuto/farmacología , Nanopartículas/química , Terapia Fototérmica , Animales , Bismuto/administración & dosificación , Bismuto/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Estructura Molecular , Nanopartículas/administración & dosificación , Neoplasias Experimentales/diagnóstico , Neoplasias Experimentales/tratamiento farmacológico , Tamaño de la Partícula , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Pirólisis/efectos de los fármacos , Células RAW 264.7 , Propiedades de Superficie , Tomografía Computarizada por Rayos X
3.
Mol Pharm ; 12(11): 4038-47, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26390039

RESUMEN

In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polímeros/química , Silicio/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Liberación de Fármacos , Células HeLa , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Nanocompuestos/química , Paclitaxel/administración & dosificación , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...