Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269961

RESUMEN

Owing to their sessile nature, plants have developed a tapestry of molecular and physiological mechanisms to overcome diverse environmental challenges, including abiotic stresses. Adaptive radiation in certain lineages, such as Aizoaceae, enable their success in colonizing arid regions and is driven by evolutionary selection. Sesuvium verrucosum (commonly known as Western sea-purslane) is a highly salt-tolerant succulent halophyte belonging to the Aizoaceae family; thus, it provides us with the model-platform for studying plant adaptation to salt stress. Various transcriptional and translational mechanisms are employed by plants to cope with salt stress. One of the systems, namely, ubiquitin-mediated post-translational modification, plays a vital role in plant tolerance to abiotic stress and other biological process. E3 ligase plays a central role in target recognition and protein specificity in ubiquitin-mediated protein degradation. Here, we characterize E3 ligases in Sesuvium verrucosum from transcriptome analysis of roots in response to salinity stress. Our de novo transcriptome assembly results in 131,454 transcripts, and the completeness of transcriptome was confirmed by BUSCO analysis (99.3% of predicted plant-specific ortholog genes). Positive selection analysis shows 101 gene families under selection; these families are enriched for abiotic stress (e.g., osmotic and salt) responses and proteasomal ubiquitin-dependent protein catabolic processes. In total, 433 E3 ligase transcripts were identified in S. verrucosum; among these transcripts, single RING-type classes were more abundant compared to multi-subunit RING-type E3 ligases. Additionally, we compared the number of single RING-finger E3 ligases with ten different plant species, which confirmed the abundance of single RING-type E3 ligases in different plant species. In addition, differential expression analysis showed significant changes in 13 single RING-type E3 ligases (p-value < 0.05) under salinity stress. Furthermore, the functions of the selected E3 ligases genes (12 genes) were confirmed by yeast assay. Among them, nine genes conferred salt tolerance in transgenic yeast. This functional assay supports the possible involvement of these E3 ligase in salinity stress. Our results lay a foundation for translational research in glycophytes to develop stress tolerant crops.


Asunto(s)
Aizoaceae , Arabidopsis , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Saccharomyces cerevisiae/metabolismo , Salinidad , Estrés Salino/genética , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Estrés Fisiológico/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Genes (Basel) ; 11(6)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531994

RESUMEN

Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.


Asunto(s)
Chenopodiaceae/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Transcriptoma/genética , Adaptación Fisiológica/genética , Chenopodiaceae/crecimiento & desarrollo , Sequías , Especies en Peligro de Extinción , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Anotación de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/genética , Polietilenglicoles/toxicidad , Análisis de Secuencia de ADN , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/genética
3.
Physiol Mol Biol Plants ; 24(4): 683-692, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30042622

RESUMEN

Haloxylon persicum (Bunge ex Boiss & Buhse), is one of the hardy woody desert shrubs, which is now endangered and/or nearing extinction. Urban landscape development and overgrazing are the major threats for the erosion of this important plant species. For conserving the species, it is critical to develop an efficient in vitro regeneration protocol for rapid multiplication of large number of regenerants. Leaf explants, cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) (0.5, 1, 2 µM), showed significant difference in bud sprouting and adventitious shoot induction. The highest shoot bud formation was recorded on MS medium supplemented with 0.5 µM TDZ. Shoot tip necrosis (STN), observed after first subculture of shoot buds in same medium, increased in severity with subculture time. Application of calcium (4 mM) and boron (0.1 mM) in combination with kinetin (10 µM) in the subculture medium significantly reduced the intensity of STN. On an average eight shoots/explant were produced by alleviating this problem. ISSR marker analysis revealed monomorphic banding pattern between progenies and parents, indicating the true to type nature of the clones and its parents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA