Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurooncol Adv ; 6(1): vdae095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022643

RESUMEN

Background: The chemotherapeutic standard of care for patients with glioblastoma (GB) is radiation therapy (RT) combined with temozolomide (TMZ). However, during the twenty years since its introduction, this so-called Stupp protocol has revealed major drawbacks, because nearly half of all GBs harbor intrinsic treatment resistance mechanisms. Prime among these are the increased expression of the DNA repair protein O6-guanine-DNA methyltransferase (MGMT) and cellular deficiency in DNA mismatch repair (MMR). Patients with such tumors receive very little, if any, benefit from TMZ. We are developing a novel molecule, NEO212 (TMZ conjugated to NEO100), that harbors the potential to overcome these limitations. Methods: We used mouse models that were orthotopically implanted with GB cell lines or primary, radioresistant human GB stem cells, representing different treatment resistance mechanisms. Animals received NEO212 (or TMZ for comparison) without or with RT. Overall survival was recorded, and histology studies quantified DNA damage, apoptosis, microvessel density, and impact on bone marrow. Results: In all tumor models, replacing TMZ with NEO212 in a schedule designed to mimic the Stupp protocol achieved a strikingly superior extension of survival, especially in TMZ-resistant and RT-resistant models. While NEO212 displayed pronounced radiation-sensitizing, DNA-damaging, pro-apoptotic, and anti-angiogenic effects in tumor tissue, it did not cause bone marrow toxicity. Conclusions: NEO212 is a candidate drug to potentially replace TMZ within the standard Stupp protocol. It has the potential to become the first chemotherapeutic agent to significantly extend overall survival in TMZ-resistant patients when combined with radiation.

2.
Autophagy ; 19(12): 3169-3188, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37545052

RESUMEN

Glioblastoma (GBM) is the most aggressive primary brain tumor, exhibiting a high rate of recurrence and poor prognosis. Surgery and chemoradiation with temozolomide (TMZ) represent the standard of care, but, in most cases, the tumor develops resistance to further treatment and the patients succumb to disease. Therefore, there is a great need for the development of well-tolerated, effective drugs that specifically target chemoresistant gliomas. NEO214 was generated by covalently conjugating rolipram, a PDE4 (phosphodiesterase 4) inhibitor, to perillyl alcohol, a naturally occurring monoterpene related to limonene. Our previous studies in preclinical models showed that NEO214 harbors anticancer activity, is able to cross the blood-brain barrier (BBB), and is remarkably well tolerated. In the present study, we investigated its mechanism of action and discovered inhibition of macroautophagy/autophagy as a key component of its anticancer effect in glioblastoma cells. We show that NEO214 prevents autophagy-lysosome fusion, thereby blocking autophagic flux and triggering glioma cell death. This process involves activation of MTOR (mechanistic target of rapamycin kinase) activity, which leads to cytoplasmic accumulation of TFEB (transcription factor EB), a critical regulator of genes involved in the autophagy-lysosomal pathway, and consequently reduced expression of autophagy-lysosome genes. When combined with chloroquine and TMZ, the anticancer impact of NEO214 is further potentiated and unfolds against TMZ-resistant cells as well. Taken together, our findings characterize NEO214 as a novel autophagy inhibitor that could become useful for overcoming chemoresistance in glioblastoma.Abbreviations: ATG: autophagy related; BAFA1: bafilomycin A1; BBB: blood brain barrier; CQ: chloroquine; GBM: glioblastoma; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MGMT: O-6-methylguanine-DNA methyltransferase; MTOR: mechanistic target of rapamycin kinase; MTORC: MTOR complex; POH: perillyl alcohol; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TMZ: temozolomide.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Autofagia/genética , Rolipram/metabolismo , Rolipram/farmacología , Rolipram/uso terapéutico , Muerte Celular , Monoterpenos/farmacología , Monoterpenos/metabolismo , Monoterpenos/uso terapéutico , Glioma/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Lisosomas/metabolismo
3.
Cells ; 12(6)2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36980272

RESUMEN

Despite important advances in the pre-clinical animal studies investigating the neuroinhibitory microenvironment at the injury site, traumatic injury to the spinal cord remains a major problem with no concrete response. Here, we examined whether (1) intranasal (IN) administration of miR133b/Ago2 can reach the injury site and achieve a therapeutic effect and (2) NEO100-based formulation of miR133b/Ago2 can improve effectiveness. 24 h after a cervical contusion, C57BL6 female mice received IN delivery of miR133b/Ago2 or miR133b/Ago2/NEO100 for 3 days, one dose per day. The pharmacokinetics of miR133b in the spinal cord lesion was determined by RT-qPCR. The role of IN delivery of miR133b on motor function was assessed by the grip strength meter (GSM) and hanging tasks. The activity of miR133b at the lesion site was established by immunostaining of fibronectin 1 (FN1), a miR133b target. We found that IN delivery of miR133b/Ago2 (1) reaches the lesion scar and co-administration of miR133b with NEO100 facilitated the cellular uptake; (2) enhanced the motor function and addition of NEO100 potentiated this effect and (3) targeted FN1 expression at the lesion scar. Our results suggest a high efficacy of IN delivery of miR133b/Ago2 to the injured spinal cord that translates to improved healing with NEO100 further potentiating this effect.


Asunto(s)
MicroARNs , Traumatismos de la Médula Espinal , Animales , Femenino , Ratones , Administración Intranasal , Proteínas Argonautas/farmacología , Proteínas Argonautas/uso terapéutico , Cicatriz/patología , Contusiones , MicroARNs/farmacología , MicroARNs/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología
4.
Cancers (Basel) ; 14(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36551551

RESUMEN

Many patients with acute myeloid leukemia (AML) are still dying from this disease. In the past, the alkylating agent temozolomide (TMZ) has been investigated for AML and found to be partially effective; however, the presence of O6-methylguanine DNA methyltransferase (MGMT; a DNA repair enzyme) in tumor cells confers profound treatment resistance against TMZ. We are developing a novel anticancer compound, called NEO212, where TMZ was covalently conjugated to perillyl alcohol (a naturally occurring monoterpene). NEO212 has revealed robust therapeutic activity in a variety of preclinical cancer models, including AML. In the current study, we investigated its impact on a panel of human AML cell lines and found that it exerted cytotoxic potency even against MGMT-positive cells that were highly resistant to TMZ. Furthermore, NEO212 strongly stimulated the expression of a large number of macrophage-associated marker genes, including CD11b/ITGAM. This latter effect could not be mimicked when cells were treated with TMZ or an equimolar mix of individual agents, TMZ plus perillyl alcohol. The superior cytotoxic impact of NEO212 appeared to involve down-regulation of MGMT protein levels. In a mouse model implanted with TMZ-resistant, MGMT-positive AML cells, two 5-day cycles of 25 mg/kg NEO212 achieved an apparent cure, as mice survived >300 days without any signs of disease. In parallel toxicity studies with rats, a 5-day cycle of 200 mg/kg NEO212 was well tolerated by these animals, whereas animals that were given 200 mg/kg TMZ all died due to severe leukopenia. Together, our results show that NEO212 exerts pleiotropic effects on AML cells that include differentiation, proliferation arrest, and eventual cell death. In vivo, NEO212 was well tolerated even at dosages that far exceed the therapeutic need, indicating a large therapeutic window. These results present NEO212 as an agent that should be considered for development as a therapeutic agent for AML.

5.
Circ Res ; 127(9): e210-e231, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32755283

RESUMEN

RATIONALE: Brain arteriovenous malformations (AVMs) are abnormal tangles of vessels where arteries and veins directly connect without intervening capillary nets, increasing the risk of intracerebral hemorrhage and stroke. Current treatments are highly invasive and often not feasible. Thus, effective noninvasive treatments are needed. We previously showed that AVM-brain endothelial cells (BECs) secreted higher VEGF (vascular endothelial growth factor) and lower TSP-1 (thrombospondin-1) levels than control BEC; and that microRNA-18a (miR-18a) normalized AVM-BEC function and phenotype, although its mechanism remained unclear. OBJECTIVE: To elucidate the mechanism of action and potential clinical application of miR-18a as an effective noninvasive treatment to selectively restore the phenotype and functionality of AVM vasculature. METHODS AND RESULTS: The molecular pathways affected by miR-18a in patient-derived BECs and AVM-BECs were determined by Western blot, RT-qPCR (quantitative reverse transcription polymerase chain reaction), ELISA, co-IP, immunostaining, knockdown and overexpression studies, flow cytometry, and luciferase reporter assays. miR-18a was shown to increase TSP-1 and decrease VEGF by reducing PAI-1 (plasminogen activator inhibitor-1/SERPINE1) levels. Furthermore, miR-18a decreased the expression of BMP4 (bone morphogenetic protein 4) and HIF-1α (hypoxia-inducible factor 1α), blocking the BMP4/ALK (activin-like kinase) 2/ALK1/ALK5 and Notch signaling pathways. As determined by Boyden chamber assays, miR-18a also reduced the abnormal AVM-BEC invasiveness, which correlated with a decrease in MMP2 (matrix metalloproteinase 2), MMP9, and ADAM10 (ADAM metallopeptidase domain 10) levels. In vivo pharmacokinetic studies showed that miR-18a reaches the brain following intravenous and intranasal administration. Intranasal co-delivery of miR-18a and NEO100, a good manufacturing practices-quality form of perillyl alcohol, improved the pharmacokinetic profile of miR-18a in the brain without affecting its pharmacological properties. Ultra-high-resolution computed tomography angiography and immunostaining studies in an Mgp-/- AVM mouse model showed that miR-18a decreased abnormal cerebral vasculature and restored the functionality of the bone marrow, lungs, spleen, and liver. CONCLUSIONS: miR-18a may have significant clinical value in preventing, reducing, and potentially reversing AVM.


Asunto(s)
Proteína Morfogenética Ósea 4/antagonistas & inhibidores , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Malformaciones Arteriovenosas Intracraneales/terapia , MicroARNs/uso terapéutico , Trombospondina 1/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Proteína ADAM10/metabolismo , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo II/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Humanos , Malformaciones Arteriovenosas Intracraneales/genética , Malformaciones Arteriovenosas Intracraneales/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Monoterpenos/administración & dosificación , Inhibidor 1 de Activador Plasminogénico/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
6.
Neurooncol Adv ; 2(1): vdaa160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392507

RESUMEN

BACKGROUND: NEO212 is a novel small-molecule anticancer agent that was generated by covalent conjugation of the natural monoterpene perillyl alcohol (POH) to the alkylating agent temozolomide (TMZ). It is undergoing preclinical development as a therapeutic for brain-localized malignancies. The aim of this study was to characterize metabolism and pharmacokinetic (PK) properties of NEO212 in preclinical models. METHODS: We used mass spectrometry (MS) and modified high-performance liquid chromatography to identify and quantitate NEO212 and its metabolites in cultured glioblastoma cells, in mouse plasma, brain, and excreta after oral gavage. RESULTS: Our methods allowed identification and quantitation of NEO212, POH, TMZ, as well as primary metabolites 5-aminoimidazole-4-carboxamide (AIC) and perillic acid (PA). Intracellular concentrations of TMZ were greater after treatment of U251TR cells with NEO212 than after treatment with TMZ. The half-life of NEO212 in mouse plasma was 94 min. In mice harboring syngeneic GL261 brain tumors, the amount of NEO212 was greater in the tumor-bearing hemisphere than in the contralateral normal hemisphere. The brain:plasma ratio of NEO212 was greater than that of TMZ. Excretion of unaltered NEO212 was through feces, whereas its AIC metabolite was excreted via urine. CONCLUSIONS: NEO212 preferentially concentrates in brain tumor tissue over normal brain tissue, and compared to TMZ has a higher brain:plasma ratio, altogether revealing favorable features to encourage its further development as a brain-targeted therapeutic. Its breakdown into well-characterized, long-lived metabolites, in particular AIC and PA, will provide useful equivalents for PK studies during further drug development and clinical trials with NEO212.

7.
J Neurosurg ; : 1-12, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31419797

RESUMEN

OBJECTIVE: Glioblastoma (GBM) is the most aggressive type of brain tumor with a high rate of tumor recurrence, and it often develops resistance over time to current standard of care chemotherapy. Its highly invasive nature plays an essential role in tumor progression and recurrence. Glioma stem cells (GSCs) are a subpopulation of glioma cells highly resistant to treatments and are considered responsible for tumor recurrence. METHODS: Patient-derived populations of GSCs were analyzed by western blot, MTT, and cytoplasmic calcium labeling to determine the cytotoxicity of NEO100. High-performance liquid chromatography was used to evaluate the levels of NEO100 in the cell culture supernatants. The effects of the compound on GSC motility were studied using Boyden chamber migration, 3D spheroid migration and invasion assays, and an mRNA expression PCR array. A RhoA activation assay, western blot, and immunofluorescence techniques were employed to confirm the signaling pathways involved. Intracranial implantation of GSCs in athymic mice was used to evaluate the effects of NEO100 in vivo on tumor progression and overall survival. RESULTS: Here, the authors show how NEO100, a highly purified good manufacturing practices-quality form of perillyl alcohol, is cytotoxic for different subtypes of GSCs, regardless of the mechanisms of DNA repair present. At doses similar to the IC50 (half maximal inhibitory concentration) values, NEO100 induces ER stress and activates apoptotic pathways in all GSC populations tested. At subcytotoxic doses in the micromolar range, NEO100 blocks migration and invasion of GSCs. These results correlate with a decrease in calpain-1 expression and an increase in RhoA activation, leading to enhanced contractility of the GSCs. In addition, NEO100 blocks the activation of the kinases Src, p42/44 MAPK, Akt, and Stat3, all related to cell proliferation and migration. Intranasal administration of NEO100 in mice with GSC-derived intracranial tumors led to a decrease in tumor progression and a 32% increase in overall survival. Immunostaining studies showed that NEO100 induces apoptosis and reduces GSC invasion in vivo. CONCLUSIONS: NEO100 could have significant value targeting GSCs and could be used for GBM therapy as either monotherapy or a coadjuvant therapy during temozolomide rest cycles.

8.
Mol Cancer Ther ; 18(3): 517-530, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30647121

RESUMEN

Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. Treatment with temozolomide, standard of care for gliomas, usually results in drug resistance and tumor recurrence. Therefore, there is a great need for drugs that target GBM. NEO214 was generated by covalently linking rolipram to perillyl alcohol (POH) via a carbamate bond to form the rolipram-perillyl alcohol conjugate. We show here that NEO214 is effective against both temozolomide-sensitive and temozolomide-resistant glioma cells. Furthermore, NEO214 is effective for different mechanisms of temozolomide resistance: overexpression of MGMT (O6-methylguanine methyl-transferase); deficiency in specific mismatch repair proteins; and overexpression of base excision repair (BER) proteins. NEO214-induced cytotoxicity involves apoptosis triggered by endoplasmic reticulum (ER) stress, as well as activating the Death Receptor 5 (DR5)/TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) pathway. In vitro studies show that glioma cells treated with NEO214 express DR5 and exhibit cell death in the presence of recombinant TRAIL, a growth factor constitutively produced by astrocytes. Our in vitro 3D coculture data show that induction of DR5 in glioma cells with NEO214 and TRAIL cause tumor cell death very effectively and specifically for glioma cells. In vivo studies show that NEO214 has antitumor efficacy in orthotropic syngeneic rodent tumor models. Furthermore, NEO214 has therapeutic potential especially for brain tumors because this drug can cross the blood-brain barrier (BBB), and is effective in the TRAIL-rich astrocyte microenvironment. NEO214 is a strong candidate for use in the treatment of GBMs.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Rolipram/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Monoterpenos/química , Monoterpenos/farmacología , Rolipram/química , Transducción de Señal/efectos de los fármacos , Temozolomida/farmacología , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cancer Lett ; 442: 170-180, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30392789

RESUMEN

As the endothelial-to-mesenchymal transition (EndMT) supports the pro-angiogenic and invasive characteristics of glioblastoma multiforme (GBM), blocking this process would be a promising approach to inhibit tumor progression and recurrence. Here, we demonstrate that glioma stem cells (GSC) induce EndMT in brain endothelial cells (BEC). TGF-ß signaling is necessary, but not sufficient to induce this EndMT process. Cell-to-cell contact and the contribution of Notch signaling are also required. NEO212, a conjugate of temozolomide and perillyl alcohol, blocks EndMT induction and reverts the mesenchymal phenotype of tumor-associated BEC (TuBEC) by blocking TGF-ß and Notch pathways. Consequently, NEO212 reduces the invasiveness and pro-angiogenic properties associated with TuBEC, without affecting control BEC. Intracranial co-implantation of BEC and GSC in athymic mice showed that EndMT occurs in vivo, and can be blocked by NEO212, supporting the potential clinical value of NEO212 for the treatment of GBM.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/análogos & derivados , Células Endoteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glioblastoma/irrigación sanguínea , Glioblastoma/tratamiento farmacológico , Neovascularización Patológica , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Técnicas de Cocultivo , Dacarbazina/farmacología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Desnudos , Invasividad Neoplásica , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Molecules ; 23(11)2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30413113

RESUMEN

We developed a bacterial expression system to produce a recombinant disintegrin, vicrostatin (VCN), whose structure is based on a natural disintegrin isolated from southern copperhead snake venom. Our goal is to develop VCN for potential clinical translation as an anti-cancer agent. VCN is a peptide of 69 amino acids with a single tyrosine residue. We have employed VCN as integrin-targeted radionuclide therapy (brachytherapy) for treatment of glioblastoma (GBM, glioma). GBM is a deadly brain cancer that doesn't discriminate between sexes and knows no age limit. We established that the tyrosine residue in VCN can be radioiodinated with full retention of bioactivity. 131I-VCN was utilized for integrin-targeted radionuclide therapy using mouse models of glioma. The combination of radioiodinated VCN plus temozolomide (a DNA alkylating agent) significantly prolonged survival of glioma-bearing mice. We also obtained similar results using an immunocompetent mouse model and a murine glioma cell line. In summary, as demonstrated in studies reported here we have shown that VCN as targeted radionuclide therapy for GBM has significant translational potential for therapy of this deadly disease.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Radioisótopos de Yodo/química , Proteínas Recombinantes/química , Venenos de Serpiente/genética , Animales , Braquiterapia , Neoplasias Encefálicas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Desintegrinas/química , Desintegrinas/genética , Desintegrinas/metabolismo , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Venenos de Serpiente/metabolismo , Temozolomida/administración & dosificación , Temozolomida/farmacología , Tirosina/química , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Cancer Ther ; 17(3): 625-637, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29440289

RESUMEN

Glioblastoma multiforme is a malignant brain tumor noted for its extensive vascularity, aggressiveness, and highly invasive nature, suggesting that cell migration plays an important role in tumor progression. The poor prognosis in GBM is associated with a high rate of tumor recurrence, and resistance to the standard of care chemotherapy, temozolomide (TMZ). The novel compound NEO212, a conjugate of TMZ and perillyl alcohol (POH), has proven to be 10-fold more cytotoxic to glioma stem cells (GSC) than TMZ, and is active against TMZ-resistant tumor cells. In this study, we show that NEO212 decreases migration and invasion of primary cultures of patient-derived GSCs, in both mesenchymal USC02 and proneural USC04 populations. The mechanism by which NEO212 reduces migration and invasion appears to be independent of its DNA alkylating effects, which cause cytotoxicity during the first hours of treatment, and is associated with a decrease in the FAK/Src signaling pathway, an effect not exhibited by TMZ. NEO212 also decreases the production of matrix metalloproteinases MMP2 and MMP9, crucial for GSC invasion. Gene expression analysis of epithelial and mesenchymal markers suggests that NEO212 increases the expression of epithelial-like characteristics, suggesting a reversion of the epithelial-to-mesenchymal transition process. Furthermore, in an in vivo orthotopic glioma model, NEO212 decreases tumor progression by reducing invasion of GSCs, thereby increasing survival time of mice. These studies indicate that NEO212, in addition to cytotoxicity, can effectively reduce migration and invasion in GSCs, thus exhibiting significant clinical value in the reduction of invasion and malignant glioma progression. Mol Cancer Ther; 17(3); 625-37. ©2018 AACR.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Dacarbazina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/patología , Masculino , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Análisis de Supervivencia , Células Tumorales Cultivadas
12.
J Vis Exp ; (95): 52375, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25651082

RESUMEN

This protocol introduces researchers to a new model for large-scale bone repair utilizing the mouse rib. The procedure details the following: preparation of the animal for surgery, opening the thoracic body wall, exposing the desired rib from the surrounding intercostal muscles, excising the desired section of rib without inducing a pneumothorax, and closing the incisions. Compared to the bones of the appendicular skeleton, the ribs are highly accessible. In addition, no internal or external fixator is necessary since the adjacent ribs provide a natural fixation. The surgery uses commercially available supplies, is straightforward to learn, and well-tolerated by the animal. The procedure can be carried out with or without removing the surrounding periosteum, and therefore the contribution of the periosteum to repair can be assessed. Results indicate that if the periosteum is retained, robust repair occurs in 1 - 2 months. We expect that use of this protocol will stimulate research into rib repair and that the findings will facilitate the development of new ways to stimulate bone repair in other locations around the body.


Asunto(s)
Modelos Animales , Procedimientos Ortopédicos/métodos , Costillas/cirugía , Animales , Femenino , Masculino , Ratones , Cicatrización de Heridas/fisiología
13.
J Vis Exp ; (68)2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23092960

RESUMEN

Programmed cell death (PCD) occurs in adults to maintain normal tissue homeostasis and during embryological development to shape tissues and organs(1,2,6,7). During development, toxic chemicals or genetic alterations can cause an increase in PCD or change PCD patterns resulting in developmental abnormalities and birth defects(3-5). To understand the etiology of these defects, the study of embryos can be complemented with in vitro assays that use differentiating embryonic stem (ES) cells. Apoptosis is a well-studied form of PCD that involves both intrinsic and extrinsic signaling to activate the caspase enzyme cascade. Characteristic cell changes include membrane blebbing, nuclear shrinking, and DNA fragmentation. Other forms of PCD do not involve caspase activation and may be the end-result of prolonged autophagy. Regardless of the PCD pathway, dying cells need to be removed. In adults, the immune cells perform this function, while in embryos, where the immune system has not yet developed, removal occurs by an alternative mechanism. This mechanism involves neighboring cells (called "non-professional phagocytes") taking on a phagocytic role-they recognize the 'eat me' signal on the surface of the dying cell and engulf it(8-10). After engulfment, the debris is brought to the lysosome for degradation. Thus regardless of PCD mechanism, an increase in lysosomal activity can be correlated with increased cell death. To study PCD, a simple assay to visualize lysosomes in thick tissues and multilayer differentiating cultures can be useful. LysoTracker dye is a highly soluble small molecule that is retained in acidic subcellular compartments such as the lysosome(11-13). The dye is taken up by diffusion and through the circulation. Since penetration is not a hindrance, visualization of PCD in thick tissues and multi-layer cultures is possible(12,13). In contrast, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) analysis(14), is limited to small samples, histological sections, and monolayer cultures because the procedure requires the entry/permeability of a terminal transferase. In contrast to Aniline blue, which diffuses and is dissolved by solvents, LysoTracker Red DND-99 is fixable, bright, and stable. Staining can be visualized with standard fluorescent or confocal microscopy in whole-mount or section using aqueous or solvent-based mounting media(12,13). Here we describe protocols using this dye to look at PCD in normal and sonic hedgehog null mouse embryos. In addition, we demonstrate analysis of PCD in differentiating ES cell cultures and present a simple quantification method. In summary, LysoTracker staining can be a great complement to other methods of detecting PCD.


Asunto(s)
Aminas/química , Apoptosis/fisiología , Células Madre Embrionarias/citología , Coloración y Etiquetado/métodos , Aminas/análisis , Aminas/metabolismo , Animales , Diferenciación Celular/fisiología , Embrión de Mamíferos/citología , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Microscopía Confocal , Microscopía Fluorescente , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA