Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35096122

RESUMEN

Chronic stress can cause the gastrointestinal disorders characterized by an altered bowel movement and abdominal pain. Studies have shown that Humulus japonicus extract (HJE) has anti-inflammatory and antidiarrheal effects, and Phragmites rhizoma extract (PEP) has antioxidative and antistress effects. The present study aimed to investigate the possible effects of HJE and PEP in rat models with stress-induced gastrointestinal dysfunctions. The rats were exposed to water avoidance stress (WAS, 1 h/day) for 10 days to induce gastrointestinal disorders. We found that WAS significantly increased fecal pellet output during 1 h stress, gastric emptying, colonic contractility, and permeability compared to the normal rats. Pretreatment with HJE and PEP (0.25 and 0.5 mL/kg, both administered separately) improved the increased gastric emptying and colonic contractility induced by electrical field stimulation, acetylcholine, and serotonin and also alleviated the increased colonic permeability. HJE and PEP also increased the claudin-1 and occludin expressions, reduced by WAS. WAS increased the concentration of TNF-α and TBARS and reduced FRAP. HJE and PEP recovered these effects. HJE and PEP improved the gastrointestinal disorders induced by WAS by upregulating the tight junction protein, possibly acting on cholinergic and serotonergic receptors to abolish the colonic hypercontractility and hyperpermeability and degradation of inflammatory cytokines via an antioxidant effect.

2.
Sci Rep ; 11(1): 23490, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873207

RESUMEN

Paclitaxel is an anti-microtubule agent that has been shown to induce cell death in gastric cancer. However, the detailed mechanism of action is unclear. In this study, we reveal that the paclitaxel-induced cell death mechanism involves mitotic catastrophe, autophagy and apoptosis in AGS cells. Paclitaxel induced intrinsic apoptosis by activating caspase-3, caspase-9 and PARP. In addition, the significant increase in autophagy marker LC3B-II, together with Atg5, class III PI3K and Beclin-1, and the down-regulation of p62 following paclitaxel treatment verified that paclitaxel induced autophagy. Further experiments showed that paclitaxel caused mitotic catastrophe, cell cycle arrest of the accumulated multinucleated giant cells at the G2/M phase and induction of cell death in 24 h. Within 48 h, the arrested multinucleated cells escaped mitosis by decreasing cell division regulatory proteins and triggered cell death. Cells treated with paclitaxel for 48 h were grown in fresh medium for 24 h and checked for CDC2, CDC25C and lamin B1 protein expressions. These proteins had decreased significantly, indicating that the remaining cells became senescent. In conclusion, it is suggested that paclitaxel-induced mitotic catastrophe is an integral part of the cell death mechanism, in addition to apoptosis and autophagy, in AGS cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Mitosis/efectos de los fármacos , Paclitaxel/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/farmacología , Caspasas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
3.
Food Sci Biotechnol ; 30(7): 979-988, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34395029

RESUMEN

Chronic diabetes mellitus (DM) can cause liver dysfunction and other complications. As Humulus japonicus is known to have anti-inflammatory and antioxidative effects, we sought to evaluate the hepatoprotective effect of H. japonicus extract (HJE) on a DM model. HJE reduced aspartate aminotransferase, alanine aminotransferase, and direct bilirubin levels and restored albumin activities relative to those found in the DM model. The abnormal levels of triglyceride, total cholesterol, high-density lipoprotein, and low-density lipoprotein in DM returned to normal levels after HJE treatment. DM-induced inflammation of the liver was ameliorated by HJE through reduction of tumor necrosis factor-α, interleukin-1ß, and cyclooxygenase-2 levels. HJE treatment downregulated malondialdehyde levels that were increased by DM. However, the downregulated superoxide dismutase and glutathione levels in DM were increased by HJE. Histological studies showed that HJE improves the liver tissue damage caused by DM. Collectively, our findings suggest that HJE may improve liver damage in DM and exhibit an inhibitory effect on hepatic injury through its anti-inflammatory and antioxidative actions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00924-w.

4.
Biomol Ther (Seoul) ; 29(4): 353-364, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34127572

RESUMEN

The gastrointestinal (GI) tract is a series of hollow organs that is responsible for the digestion and absorption of ingested foods and the excretion of waste. Any changes in the GI tract can lead to GI disorders. GI disorders are highly prevalent in the population and account for substantial morbidity, mortality, and healthcare utilization. GI disorders can be functional, or organic with structural changes. Functional GI disorders include functional dyspepsia and irritable bowel syndrome. Organic GI disorders include inflammation of the GI tract due to chronic infection, drugs, trauma, and other causes. Recent studies have highlighted a new explanatory mechanism for GI disorders. It has been suggested that autophagy, an intracellular homeostatic mechanism, also plays an important role in the pathogenesis of GI disorders. Autophagy has three primary forms: macroautophagy, microautophagy, and chaperone-mediated autophagy. It may affect intestinal homeostasis, host defense against intestinal pathogens, regulation of the gut microbiota, and innate and adaptive immunity. Drugs targeting autophagy could, therefore, have therapeutic potential for treating GI disorders. In this review, we provide an overview of current understanding regarding the evidence for autophagy in GI diseases and updates on potential treatments, including drugs and complementary and alternative medicines.

5.
Arch Pharm Res ; 43(6): 666-675, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32607942

RESUMEN

Dysfunction of gastrointestinal (GI) motility is a common complication in patients with diabetes mellitus (DM). Studies related to changes in fundus contraction induced by inhibitors in DM are not well known. Therefore, this study aimed to investigate the signaling pathways involved in the changes in the contraction of fundus smooth muscle obtained from control and DM rats. DM was induced by injecting streptozotocin (65 mg/kg) into Sprague-Dawley rats. The rats were sacrificed after 14 days. Fundus smooth muscle contraction was stimulated using electrical field stimulation (amplitude, 50 V; duration, 1 min; frequency, 2-20 Hz) and acetylcholine (0.1 mM). The inhibitor-mediated cell membrane was pre-treated with atropine, verapamil, methysergide, ketanserin, ondansetron, and GR 113808. Inhibitors related to intracellular signaling, such as U73122, chelerythrine, L-NNA, were also used. ML-9 and Y-27632 were identified as inhibitors of factors of myosin light chain (MLC). The contractility was observed to be lower in the DM group than in the control group. Further, the activities of phospholipase C (PLC), protein kinase C (PKC), and myosin light chain kinase (MLCK) were decreased in the DM group. DM reduced the activity of PLC, PKC, and MLCK, which resulted in a decrease in the contractility of the fundus smooth muscle. Therefore, our results present the mechanism of this DM-mediated GI disorder.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Fundus Gástrico/metabolismo , Músculo Liso/metabolismo , Transducción de Señal , Animales , Membrana Celular/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Masculino , Contracción Muscular , Ratas , Ratas Sprague-Dawley , Estreptozocina/administración & dosificación
6.
Biomol Ther (Seoul) ; 28(4): 328-336, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126734

RESUMEN

Diabetes mellitus affects the colonic motility developing gastrointestinal symptoms, such as constipation. The aim of the study was to examine the role of intracellular signaling pathways contributing to colonic dysmotility in diabetes mellitus. To generate diabetes mellitus, the rats were injected by a single high dose of streptozotocin (65 mg/kg) intraperitoneally. The proximal colons from both normal and diabetic rats were contracted by applying an electrical field stimulation with pulse voltage of 40 V in amplitude and pulse duration of 1 ms at frequencies of 1, 2, 4, and 6 Hz. The muscle strips from both normal rats and rats with diabetes mellitus were pretreated with different antagonists and inhibitors. Rats with diabetes mellitus had lower motility than the control group. There were significant differences in the percentage of inhibition of contraction between normal rats and rats with diabetes mellitus after the incubation of tetrodotoxin (neuronal blocker), atropine (muscarinic receptor antagonist), prazosin (α1 adrenergic receptor antagonist), DPCPX (adenosine A1 receptor antagonist), verapamil (L-type Ca2+ channel blocker), U73122 (PLC inhibitor), ML-9 (MLCK inhibitor), udenafil (PDE5 inhibitor), and methylene blue (guanylate cyclase inhibitor). The protein expression of p-MLC and PDE5 were decreased in the diabetic group compared to the normal group. These results showed that the reduced colonic contractility resulted from the impaired neuronal conduction and decreased muscarinic receptor sensitivity, which resulted in decreased phosphorylation of MLC via MLCK, and cGMP activity through PDE5.

7.
Biomol Ther (Seoul) ; 28(2): 202-210, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31522488

RESUMEN

Fluoxetine is used widely as an antidepressant for the treatment of cancer-related depression, but has been reported to also have anti-cancer activity. In this study, we investigated the cytotoxicity of fluoxetine to human gastric adenocarcinoma cells; as shown by the MTT assay, fluoxetine induced cell death. Subsequently, cells were treated with 10 or 20 µM fluoxetine for 24 h and analyzed. Apoptosis was confirmed by the increased number of early apoptotic cells, shown by Annexin V- propidium iodide staining. Nuclear condensation was visualized by DAPI staining. A significant increase in the expression of cleaved PARP was observed by western blotting. The pan-caspase inhibitor Z-VAD-FMK was used to detect the extent of caspase-dependent cell death. The induction of autophagy was determined by the formation of acidic vesicular organelles (AVOs), which was visualized by acridine orange staining, and the increased expression of autophagy markers, such as LC3B, Beclin 1, and p62/SQSTM 1, observed by western blotting. The expression of upstream proteins, such as p-Akt and p-mTOR, were decreased. Autophagic degradation was evaluated by using bafilomycin, an inhibitor of late-stage autophagy. Bafilomycin did not significantly enhance LC3B expression induced by fluoxetine, which suggested autophagic degradation was impaired. In addition, the co-administration of the autophagy inhibitor 3-methyladenine and fluoxetine significantly increased fluoxetine-induced apoptosis, with decreased p-Akt and markedly increased death receptor 4 and 5 expression. Our results suggested that fluoxetine simultaneously induced both protective autophagy and apoptosis and that the inhibition of autophagy enhanced fluoxetine-induced apoptosis through increased death receptor expression.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 537-549, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31707450

RESUMEN

Gastric cancer is the fourth most common cancer in the world. Fluoxetine (FLX), a selective serotonin reuptake inhibitor, can inhibit the growth of cancer cells by inducing apoptotic cell death through various signaling pathways. This study was aimed to determine the mechanism of apoptotic cell death induced by FLX in AGS cells. MTT assay for cell viability test and colony forming assay was performed for detection of cell proliferation. Western blot analysis was conducted for protein expression. Increased fluorescence intensity and chromatin condensation were observed using DAPI staining. Production of reactive oxygen species (ROS) was measured by DCFDA assay. AGS cell proliferation was remarkedly inhibited by FLX in a dose-dependent manner starting at a concentration of 20 µM. The expression of death receptors was increased, which resulted in elevated expression of activated caspases and cleaved PARP, leading to FLX-induced apoptosis. Moreover, FLX significantly increased production of ROS, and N-acetyl cysteine, which scavenges ROS, attenuated the cytotoxic effects of FLX. In addition, treatment with FLX increased the expression of the endoplasmic reticulum (ER) stress marker, CHOP. P53 protein expression in AGS cells also decreased significantly with FLX treatment. Inhibition of ER stress significantly decreased the expressions of death receptor 5 (DR5), cleaved caspase 3, and cleaved PARP, but not to control levels. FLX-induced apoptosis in AGS involved upregulation of death receptors, ROS generation, and activation of ER stress.


Asunto(s)
Antidepresivos/farmacología , Antineoplásicos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...