Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spine J ; 24(3): 435-445, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37890727

RESUMEN

BACKGROUND CONTEXT: The optimal decompression time for patients presenting with acute traumatic central cord syndrome (ATCCS) has been debated, and a high level of evidence is lacking. PURPOSE: To compare early (<24 hours) versus late (≥24 hours) surgical decompression for ATCCS. STUDY DESIGN: Systematic review and meta-analysis. METHODS: Medline, PubMed, Embase, and CENTRAL were searched from inception to March 15th, 2023. The primary outcome was American Spinal Injury Association (ASIA) motor score. Secondary outcomes were venous thromboembolism (VTE), total complications, overall mortality, hospital length of stay (LOS), and ICU LOS. The GRADE approach determined certainty in evidence. RESULTS: The nine studies included reported on 5,619 patients, of whom 2,099 (37.35%) underwent early decompression and 3520 (62.65%) underwent late decompression. The mean age (53.3 vs 56.2 years, p=.505) and admission ASIA motor score (mean difference [MD]=-0.31 [-3.61, 2.98], p=.85) were similar between the early and late decompression groups. At 6-month follow-up, the two groups were similar in ASIA motor score (MD= -3.30 [-8.24, 1.65], p=.19). However, at 1-year follow-up, the early decompression group had a higher ASIA motor score than the late decompression group in total (MD=4.89 [2.89, 6.88], p<.001, evidence: moderate), upper extremities (MD=2.59 [0.82, 4.36], p=.004) and lower extremities (MD=1.08 [0.34, 1.83], p=.004). Early decompression was also associated with lower VTE (odds ratio [OR]=0.41 [0.26, 0.65], p=.001, evidence: moderate), total complications (OR=0.53 [0.42, 0.67], p<.001, evidence: moderate), and hospital LOS (MD=-2.94 days [-3.83, -2.04], p<.001, evidence: moderate). Finally, ICU LOS (MD=-0.69 days [-1.65, 0.28], p=.16, evidence: very low) and overall mortality (OR=1.35 [0.93, 1.94], p=.11, evidence: moderate) were similar between the two groups. CONCLUSIONS: The meta-analysis of these studies demonstrated that early decompression was beneficial in terms of ASIA motor score, VTE, complications, and hospital LOS. Furthermore, early decompression did not increase mortality odds. Although treatment decision-making has been individualized, early decompression should be considered for patients presenting with ATCCS, provided that the surgeon deems it appropriate.


Asunto(s)
Síndrome del Cordón Central , Traumatismos de la Médula Espinal , Tromboembolia Venosa , Humanos , Persona de Mediana Edad , Síndrome del Cordón Central/cirugía , Descompresión Quirúrgica/efectos adversos , Traumatismos de la Médula Espinal/cirugía , Columna Vertebral/cirugía
2.
IEEE Trans Biomed Eng ; 70(7): 1992-2001, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37018313

RESUMEN

OBJECTIVE: Here we investigate the ability of low-intensity ultrasound (LIUS) applied to the spinal cord to modulate the transmission of motor signals. METHODS: Male adult Sprague-Dawley rats (n = 10, 250-300 g, 15 weeks old) were used in this study. Anesthesia was initially induced with 2% isoflurane carried by oxygen at 4 L/min via a nose cone. Cranial, upper extremity, and lower extremity electrodes were placed. A thoracic laminectomy was performed to expose the spinal cord at the T11 and T12 vertebral levels. A LIUS transducer was coupled to the exposed spinal cord, and motor evoked potentials (MEPs) were acquired each minute for either 5- or 10-minutes of sonication. Following the sonication period, the ultrasound was turned off and post-sonication MEPs were acquired for an additional 5 minutes. RESULTS: Hindlimb MEP amplitude significantly decreased during sonication in both the 5- (p < 0.001) and 10-min (p = 0.004) cohorts with a corresponding gradual recovery to baseline. Forelimb MEP amplitude did not demonstrate any statistically significant changes during sonication in either the 5- (p = 0.46) or 10-min (p = 0.80) trials. CONCLUSION: LIUS applied to the spinal cord suppresses MEP signals caudal to the site of sonication, with recovery of MEPs to baseline after sonication. SIGNIFICANCE: LIUS can suppress motor signals in the spinal cord and may be useful in treating movement disorders driven by excessive excitation of spinal neurons.


Asunto(s)
Potenciales Evocados Motores , Traumatismos de la Médula Espinal , Ratas , Animales , Masculino , Potenciales Evocados Motores/fisiología , Ratas Sprague-Dawley , Médula Espinal/fisiología , Columna Vertebral , Potenciales Evocados
3.
HSS J ; 17(3): 351-358, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34539277

RESUMEN

Augmented reality (AR) navigation refers to novel technologies that superimpose images, such as radiographs and navigation pathways, onto a view of the operative field. The development of AR navigation has focused on improving the safety and efficacy of neurosurgical and orthopedic procedures. In this review, the authors focus on 3 types of AR technology used in spine surgery: AR surgical navigation, microscope-mediated heads-up display, and AR head-mounted displays. Microscope AR and head-mounted displays offer the advantage of reducing attention shift and line-of-sight interruptions inherent in traditional navigation systems. With the U.S. Food and Drug Administration's recent clearance of the XVision AR system (Augmedics, Arlington Heights, IL), the adoption and refinement of AR technology by spine surgeons will only accelerate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...