Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Microgravity ; 10(1): 39, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538677

RESUMEN

Bedrest shifts fasting and postprandial fuel selection towards carbohydrate use over lipids, potentially affecting astronauts' performance and health. We investigated whether this change occurs in astronauts after at least 3 months onboard the International Space Station (ISS). We further explored the associations with diet, physical activity (PA), and body composition. Before and during spaceflight, respiratory quotient (RQ), carbohydrate, and fat oxidation were measured by indirect calorimetry before and following a standardized meal in 11 males (age = 45.7 [SD 7.7] years, BMI = 24.3 [2.1] kg m-²). Postprandial substrate use was determined by 0-to-260 min postprandial incremental area under the curve (iAUC) of nutrient oxidation and the difference between maximal postprandial and fasting RQ (ΔRQ). Food quotient (FQ) was calculated from diet logs. Fat (FM) and fat-free mass (FFM) were measured by hydrometry and PA by accelerometry and diary logs. Spaceflight increased fasting RQ (P = 0.01) and carbohydrate oxidation (P = 0.04) and decreased fasting lipid oxidation (P < 0.01). An increase in FQ (P < 0.001) indicated dietary modifications onboard the ISS. Spaceflight-induced RQ changes adjusted for ground RQ correlated with inflight FQ (P < 0.01). In postprandial conditions, nutrient oxidation and ΔRQ were unaffected on average. Lipid oxidation changes negatively correlated with FFM changes and inflight aerobic exercise and positively with FM changes. The opposite was observed for carbohydrate oxidation. ΔRQ changes were negatively and positively related to FM and FFM changes, respectively. In conclusion, fasting substrate oxidation shift observed during spaceflight may primarily result from dietary modifications. Between-astronaut variability in postprandial substrate oxidation depends on body composition changes and inflight PA.

2.
NPJ Microgravity ; 8(1): 31, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927552

RESUMEN

Future long-duration human spaceflight will require developments to limit biocontamination of surface habitats. The MATISS (Microbial Aerosol Tethering on Innovative Surfaces in the international Space Station) experiments allowed for exposing surface treatments in the ISS (International Space Station) using a sample-holder developed to this end. Three campaigns of FDTS (perFluoroDecylTrichloroSilane) surface exposures were performed over monthly durations during distinct periods. Tile scanning optical microscopy (×3 and ×30 magnifications) showed a relatively clean environment with a few particles on the surface (0.8 to 7 particles per mm2). The varied densities and shapes in the coarse area fraction (50-1500 µm2) indicated different sources of contamination in the long term, while the bacteriomorph shapes of the fine area fraction (0.5-15 µm2) were consistent with microbial contamination. The surface contamination rates correlate to astronauts' occupancy rates on board. Asymmetric particles density profiles formed throughout time along the air-flow. The higher density values were located near the flow entry for the coarse particles, while the opposite was the case for the fine particles, probably indicating the hydrophobic interaction of particles with the FDTS surface.

3.
Sports Med ; 52(12): 3039-3053, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35829995

RESUMEN

OBJECTIVE: Body mass (BM) loss and body composition (BC) changes threaten astronauts' health and mission success. However, the energetic contribution of the exercise countermeasure to these changes has never been investigated during long-term missions. We studied energy balance and BC in astronauts during 6-month missions onboard the International Space Station. METHODS: Before and after at least 3 months in space, BM, BC, total and activity energy expenditure (TEE and AEE) were measured using the doubly labeled water method in 11 astronauts (2011-2017). Physical activity (PA) was assessed by the SensewearPro® activity-device. RESULTS: Three-month spaceflight decreased BM (- 1.20 kg [SE 0.5]; P = 0.04), mainly due to non-significant fat-free mass loss (FFM; - 0.94 kg [0.59]). The decrease in walking time (- 63.2 min/day [11.5]; P < 0.001) from preflight was compensated by increases in non-ambulatory activities (+ 64.8 min/day [18.8]; P < 0.01). Average TEE was unaffected but a large interindividual variability was noted. Astronauts were stratified into those who maintained (stable_TEE; n = 6) and those who decreased (decreased_TEE; n = 5) TEE and AEE compared to preflight data. Although both groups lost similar BM, FFM was maintained and FM reduced in stable_TEE astronauts, while FFM decreased and FM increased in decreased_TEE astronauts (estimated between-group-difference (EGD) in ΔFFMindex [FFMI] 0.87 kg/m2, 95% CI + 0.32 to + 1.41; P = 0.01, ΔFMindex [FMI] - 1.09 kg/m2, 95% CI - 2.06 to - 0.11 kg/m2; P = 0.03). The stable_TEE group had higher baseline FFMI, and greater baseline and inflight vigorous PA than the decreased_TEE group (P < 0.05 for all). ΔFMI and ΔFFMI were respectively negatively and positively associated with both ΔTEE and ΔAEE. CONCLUSION: Both ground fitness and inflight overall PA are associated with spaceflight-induced TEE and BC changes and thus energy requirements. New instruments are needed to measure real-time individual changes in inflight energy balance components.


Asunto(s)
Astronautas , Composición Corporal , Humanos , Metabolismo Energético , Ejercicio Físico
4.
NPJ Microgravity ; 6: 29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102694

RESUMEN

Future long-duration human spaceflight calls for developments to limit biocontamination of the surface habitats. The MATISS experiment tests surface treatments in the ISS's atmosphere. Four sample holders were mounted with glass lamella with hydrophobic coatings, and exposed in the Columbus module for ~6 months. About 7800 particles were detected by tile scanning optical microscopy (×3 and ×30 magnification) indicating a relatively clean environment (a few particles per mm2), but leading to a significant coverage-rate (>2% in 20 years). Varied shapes were displayed in the coarse (50-1500 µm2) and fine (0.5-50 µm2) area fractions, consistent with scale dices (tissue or skin) and microbial cells, respectively. The 200-900 µm2 fraction of the coarse particles was systematically higher on FDTS and SiOCH than on Parylene, while the opposite was observed for the <10 µm2 fraction of the fine particles. This trend suggests two biocontamination sources and a surface deposition impacted by hydrophobic coatings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...