Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(13): 6018-6026, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37352368

RESUMEN

Superconducting nanowire single-photon detectors (SNSPDs) have enabled the realization of several quantum optics technologies thanks to their high system detection efficiency (SDE), low dark counts, and fast recovery time. However, the widespread use of linear optical quantum computing, quasi-deterministic single-photon sources, and quantum repeaters requires even faster detectors that can also distinguish between different photon-number states. Here, we present an SNSPD array composed of 14 independent pixels, achieving an SDE of 90% in the telecommunications band. By reading each pixel of the array independently, we show detection of telecommunication photons at 1.5 GHz with 45% absolute SDE. We exploit the dynamic photon-number resolution of the array to demonstrate accurate state reconstruction for a wide range of light inputs, including operation with long-duration light pulses, as obtained with some cavity-based sources. We show two-photon and three-photon fidelities of 74% and 57%, respectively, which represent state-of-the-art results for fiber-coupled SNSPDs.

2.
Antioxidants (Basel) ; 12(2)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36829945

RESUMEN

A Pacific brittle star Ophiura sarsii has previously been shown to produce a chlorin (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (ETPA) (1) with potent phototoxic activities, making it applicable to photodynamic therapy. Using extensive LC-MS metabolite profiling, molecular network analysis, and targeted isolation with de novo NMR structure elucidation, we herein identify five additional chlorin compounds from O. sarsii and its deep-sea relative O. ooplax: 10S-Hydroxypheophorbide a (2), Pheophorbide a (3), Pyropheophorbide a (4), (3S,4S,21R)-14-Ethyl-9-(hydroxymethyl)-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (5), and (3S,4S,21R)-14-Ethyl-21-hydroxy-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (6). Chlorins 5 and 6 have not been previously reported in natural sources. Interestingly, low amounts of chlorins 1-4 and 6 could also be identified in a distant species, the basket star Gorgonocephalus cf. eucnemis, demonstrating that chlorins are produced by a wide spectrum of marine invertebrates of the class Ophiuroidea. Following the purification of these major Ophiura chlorin metabolites, we discovered the significant singlet oxygen quantum yield upon their photoinduction and the resulting phototoxicity against triple-negative breast cancer BT-20 cells. These studies identify an arsenal of brittle star chlorins as natural photosensitizers with potential photodynamic therapy applications.

3.
Opt Express ; 27(14): 19309-19318, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503692

RESUMEN

Integrated photonics is increasing in importance for compact, robust, and scalable enabling quantum technologies. This is particularly interesting for developing quantum communication networks, where resources need to be deployed in the field. We exploit photonic chip-based Si3N4 microring resonators to realise a photon pair source with low-loss, high-noise suppression and coincidence rates of 80×103 s-1. A simple photonic noise characterisation technique is presented that distinguishes linear and nonlinear contributions useful for system design and optimisation. We then demonstrate an all-fiber 750 MHz clock-rate sequential Time-Bin entanglement scheme with raw interference visibilities > 98 %.

4.
Opt Express ; 24(1): 125-33, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26832244

RESUMEN

We demonstrate postselection free heralded qubit amplification for Time-Bin qubits and single photon states in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded single photon amplifier with independent sources. This provides a significant advance towards demonstrating device-independent quantum key distribution as well as fundamental tests of quantum mechanics over extended distances.

5.
Phys Rev Lett ; 114(22): 220404, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26196606

RESUMEN

Quantum nonlocality stands as a resource for device independent quantum information processing (DIQIP), such as, for instance, device independent quantum key distribution. We investigate, experimentally, the assumption of limited measurement dependence, i.e., that the measurement settings used in Bell inequality tests or DIQIP are partially influenced by the source of entangled particle and/or by an adversary. Using a recently derived Bell-like inequality [G. Pütz, Phys. Rev. Lett. 113, 190402 (2014)] and a 99% fidelity source of partially entangled polarization photonic qubits, we obtain a clear violation of the inequality, excluding a much larger range of measurement dependent local models than would be possible with an adapted Clauser-Horne-Shimony-Holt (CHSH) inequality. It is therefore shown that the measurement independence assumption can be widely relaxed while still demonstrating quantum nonlocality.

6.
Opt Express ; 20(21): 23846-55, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-23188350

RESUMEN

We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.


Asunto(s)
Rayos Láser , Fotometría/instrumentación , Refractometría/instrumentación , Telecomunicaciones/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Fotones , Ondas de Radio
7.
Phys Rev Lett ; 106(12): 120403, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517286

RESUMEN

We show that an entanglement swapping operation performed with spontaneous parametric down-conversion can be made faithful without postselection using sum-frequency generation. This invites us to revisit the sum-frequency process and from a proof-of-principle experiment, we demonstrate that it provides a realistic solution for nonlinear optics at the single-photon level. This opens the way to attractive alternatives to six-photon protocols based on linear optics used, e.g., for the heralded creation of maximally entangled pairs or for device-independent quantum key distribution.

8.
Rev Sci Instrum ; 81(10): 103105, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21034073

RESUMEN

We present two implementations of photon counting time-multiplexing detectors for near-infrared wavelengths, based on Peltier cooled InGaAs/InP avalanche photodiodes. A first implementation is motivated by practical considerations using only commercially available components. It features 16 bins, pulse repetition rates of up to 22 kHz, and a large range of applicable pulse widths of up to 100 ns. A second implementation is based on rapid gating detectors, permitting dead times below 10 ns. This allows one to realize a high dynamic-range 32 bin detector, able to process pulse repetition rates of up to 6 MHz for pulse widths of up to 200 ps. Analysis of the detector response at 16.5% detection efficiency reveals a single-shot energy resolution on the attojoule level.

9.
Opt Express ; 18(21): 22099-104, 2010 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-20941111

RESUMEN

We report a coherence-preserving photon frequency down-conversion experiment based on difference-frequency generation in a periodically poled Lithium niobate waveguide, at the single-photon level. The coherence of the process has been demonstrated by measuring the phase coherence of pseudo single-photon time-bin qubits after frequency conversion with an interference visibility of >96 %. This interface could be of interest for quantum repeater based hybrid networks.

10.
Opt Express ; 18(10): 10750-9, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20588927

RESUMEN

In this paper we present a photon number resolving detector at infrared wavelengths, operating at room temperature and with a large dynamic range. It is based on the up-conversion of a signal at 1559 nm into visible wavelength and on its detection by a thermoelectrically cooled multi-pixel silicon avalanche photodiodode, also known as a Silicon Photon Multiplier. With the appropriate up-conversion this scheme can be implemented for arbitrary wavelengths above the visible spectral window. The preservation of the poissonian statistics when detecting coherent states is studied and the cross-talk effects on the detected signal can be easily estimated in order to calibrate the detector. This system is well suited for measuring very low intensities at infrared wavelengths and for analyzing multiphoton quantum states.


Asunto(s)
Fotometría/instrumentación , Semiconductores , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Rayos Infrarrojos , Fotones , Temperatura
11.
Opt Express ; 17(16): 13326-34, 2009 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-19654737

RESUMEN

Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43 dB-loss (150 km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5 bps.


Asunto(s)
Seguridad Computacional/instrumentación , Tecnología de Fibra Óptica/instrumentación , Dispositivos Ópticos , Procesamiento de Señales Asistido por Computador/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Modelos Teóricos , Dispersión de Radiación
12.
Opt Express ; 15(13): 8237-42, 2007 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19547152

RESUMEN

We implement a photon-counting Optical Time Domain Reflectometer (OTDR) at 1.55mum which exhibits a high 2-point resolution and a high accuracy. It is based on a low temporal-jitter photon-counting module at 1.55mum. This detector is composed of a periodically poled Lithium niobate (PPLN) waveguide, which provides a wavelength conversion from near infrared to visible light, and a low jitter silicon photon-counting detector. With this apparatus, we obtain centimetre resolution over a measurement range of tens of kilometres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...