Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1395: 231-235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527642

RESUMEN

Signalling pathways such as ERK1/2, p38 or PI3K are activated in tumour cells by extracellular acidosis, which is a common phenomenon in human tumours. These signalling pathways can modulate the mitochondrial function and activity. The aim of the study was to evaluate the impact of extracellular acidosis on the mitochondrial O2 consumption and, in consequence, the potential role of ERK1/2, p38 and PI3K cascades on modulating the respiratory function. The O2 consumption rate (OCR) was measured at pH 7.4 and extracellular acidosis (pH 6.6) in combination with inhibition of the respective signalling pathway. The activity of the pathways was determined by phosphorylation-specific western blot using the cytosolic and mitochondrial fraction of cell lysates. The experiments were performed on a rat tumour cell line (subline AT1 of the rat R-3327 prostate carcinoma) and normal cells (NRK-49F fibroblasts). Acidosis increased the OCR of AT1 cells, especially the basal OCR and the O2 consumption, which is related to ATP production. In normal NRKF cells OCR was unaffected by low pH. Inhibition of ERK1/2 and PI3K, but not p38, reduced the acidosis-induced increase of the OCR significantly in AT1 tumour cells. In this cell line acidosis also led to an ERK1/2 and PI3K activation, predominantly in the mitochondrial fraction. These results indicate that extracellular acidosis activates cellular respiration in tumour cells, presumably by activating the ERK1/2 and/or the PI3K signalling cascade. This activation of ERK1/2 and PI3K is located primarily in the mitochondrial compartment of the cells.


Asunto(s)
Acidosis , Transducción de Señal , Masculino , Animales , Ratas , Humanos , Acidosis/metabolismo , Línea Celular Tumoral , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Adv Exp Med Biol ; 1395: 243-248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527644

RESUMEN

Extracellular acidosis is a characteristic of solid tumours, resulting from hypoxia-induced glycolytic metabolism as well as from the "Warburg effect" (aerobic glycolysis). The acidic environment has shown to affect functional tumour properties (proliferation, migration, invasion) and thus the aim of the study was to identify signalling mechanisms, mediating these pH-dependent effects. Therefore, the serum response factor (Srf) and the activation of the serum response element (SRE) by acidosis were analysed in AT-1 prostate carcinoma cells. Furthermore, the expression of downstream targets of this cascade, namely the early growth response 1 (Egr1), which seems to be involved in tumour proliferation, and the cellular communication network factor 1 (Ccn1), which both contain SRE in their promotor region were examined in two tumour cell lines. Extracellular acidification led to an upregulation of Srf and a functional activation of the SRE. Egr1 expression was increased by acidosis in AT-1 cells whereas hypoxia had a suppressive effect. In experimental tumours, in vivo Egr1 and Ccn1 were also found to be acidosis-dependent. Also, it turned out that pH regulated expression of Egr1 was followed by comparable changes of p21, which is an important regulator of the cell cycle.This study identifies the Srf-SRE signalling cascade and downstream Egr1 and Ccn1 to be acidosis-regulated in vitro and in vivo, potentially affecting tumour progression. Especially linked expression changes of Egr1 and p21 may mediate acidosis-induced effects on cell proliferation.


Asunto(s)
Acidosis , Hipoxia , Neoplasias de la Próstata , Animales , Humanos , Masculino , Acidosis/genética , Acidosis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/farmacología , Hipoxia/genética , Hipoxia/metabolismo , Neoplasias Experimentales , Activación Transcripcional , Ratas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Elemento de Respuesta al Suero/genética , Elemento de Respuesta al Suero/fisiología
3.
Adv Exp Med Biol ; 1395: 275-280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527649

RESUMEN

Non-invasive visualisation of the expression of hypoxia-related proteins, such as carbonic anhydrase IX (CA IX), by positron emission tomography (PET) could provide important information on the oxygenation status of tumours. Since betulinic acid derivatives bind specifically to CA IX the aim of the study was the development betulinic acid-based 68Ga-labelled PET tracers and to evaluate the hypoxia detecting properties in vitro and in vivo. The binding of betulinic acid (B-DOTA) and betulinyl-3-sulfamate (BS-DOTA) was assessed in two rat tumour cell lines (AT1 prostate and Walker-256 mammary carcinomas). AT1 cells express CA IX in a hypoxia-dependent manner whereas Walker-256 cells, expressing almost no CA IX in wildtype, were transfected with the rat Car9 gene. In vivo measurements were carried out in a small animal PET/CT in AT1 tumours in rats breathing room air, 8% or 100% O2. In AT1 cells hypoxia-induced overexpression of CA IX led to a stronger binding of BS-DOTA but not of B-DOTA. The BS-DOTA binding correlated linearly with the CA IX protein expression and could be blocked by an excess of unlabelled tracer. In the transfected Walker-256 cells no specific binding of either of the tracers was seen. In vivo the intratumoral accumulation of BS-DOTA was increased in animals kept under inspiratory hypoxia and reduced by hyperoxia. Therefore, betulinyl-3-sulfamate could be used as a PET tracer of CA IX expression in tumours and to provide information about the oxygenation status. However, accumulation data indicated that binding not only depends on hypoxia-induce CA IX expression but also on the tumour-line-specific basal expression and on the initial oxygenation status of the tumour.


Asunto(s)
Ácido Betulínico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Masculino , Animales , Ratas , Anhidrasa Carbónica IX/genética , Anhidrasa Carbónica IX/metabolismo , Tomografía de Emisión de Positrones/métodos , Antígenos de Neoplasias/metabolismo , Hipoxia/diagnóstico por imagen
4.
Adv Exp Med Biol ; 1395: 281-285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527650

RESUMEN

The metabolic microenvironment of solid tumours is often dominated by extracellular acidosis which results from glycolytic metabolism. Acidosis can modulate gene expression and foster the malignant progression. The aim of the study was to analyse the effects of extracellular acidosis on the mTOR signalling pathway, an important regulator of anabolic and catabolic processes like cell proliferation and autophagy. The study was performed in two tumour cell lines, AT-1 prostate and Walker-256 mammary carcinoma cells. Cells were incubated at pH 7.4 or 6.6 for 3 h and 24 h. Then RNA and protein were extracted and analysed by qPCR and western blot. mTOR and P70-S6 kinase (P70-S6K), an important downstream target of mTOR, as well as the autophagic flux were studied. The effect of acidosis on P70S6K phosphorylation was compared to pharmacological mTOR inhibition with LY294002 and rapamycin. In both cell lines the total mTOR expression was not altered by acidosis, however, the mTOR phosphorylation was reduced after 3 h but not after 24 h. The P70S6K phosphorylation was reduced at both time points comparable to changes by pharmacological mTOR inhibitors. The autophagic flux, also a target of mTOR and measured by LC3-II expression, was increased in both cell lines after 24 h of acidosis. The results of this study indicate that mTOR signalling is inhibited by extracellular acidosis which then lead to a reduced activity of the P70-S6 kinase (modulating gene expression) and increased autophagy possibly mediated by ULK1/2 activity. These finding may offer new perspectives for therapeutic interventions in acidic tumours.


Asunto(s)
Acidosis , Neoplasias , Proteínas Quinasas S6 Ribosómicas 70-kDa , Masculino , Acidosis/genética , Acidosis/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Femenino , Animales , Ratas , Neoplasias/genética , Neoplasias/metabolismo
5.
Adv Exp Med Biol ; 1269: 145-149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966209

RESUMEN

The metabolic microenvironment in tumors is characterized by hypoxia and acidosis. Extracellular pH sometimes decreases to even below 6.0. Previous experiments showed that tissue pH has an impact on tumor cell proliferation and apoptosis. However, the mechanism of how cell cycle progression is affected by decreased pH is not fully understood yet. One possible mechanism includes changes in the expression of miRNAs. The aim of this study was to analyze the impact of pH-regulated miRNAs (miR-183 and miR-215) on proliferation, apoptosis, and necrosis of tumor cells. Therefore, AT1 prostate and Walker-256 mammary carcinoma cells were transfected with the miRNAs or with the respective antagomirs and incubated at pH 7.4 and 6.6 for 24 h. AT1 cells underwent a G0/G1 cell cycle arrest under acidic conditions and showed a marked reduction of the number of actively DNA-synthesizing cells. In Walker-256 cells, acidosis induced a reduction of apoptosis and additionally a significant increase in necrotic cell death. Transfection of tumor cells with miR-183 or miR-215, which were significantly downregulated under acidic conditions, had no impact on cell death of AT1 or Walker-256 cells. Overexpression of miR-183, which is also downregulated by acidosis, intensified G0/G1 cell cycle arrest in AT1 cells. Previous studies revealed that hypoxia-related tumor acidosis affects the expression of different small noncoding RNAs. However, not all of these acidosis-regulated miRNAs seem to have an impact on proliferation, apoptosis, and necrosis of tumor cells. While miR-215 had no influence, miR-183 seems to be an interesting candidate that could amplify the impact of extracellular acidosis on malignant behavior of tumor cells.


Asunto(s)
Acidosis , MicroARNs , Acidosis/genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/genética , Masculino , MicroARNs/genética
6.
Adv Exp Med Biol ; 1269: 151-155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966210

RESUMEN

Tumor tissue shows special features in metabolism in contrast to healthy tissue. Besides a distinctive oxygen deficiency, tumors often show a reduced extracellular pH (acidosis) resulting from an intensified glycolysis not only under hypoxic but also under normoxic conditions (Warburg effect). As shown in previous studies, cell migration is increased in AT1 prostate carcinoma cells after incubation at pH 6.6, and this leads to an increased number of lung metastases in vivo. However, the signaling pathway causing these functional changes is still unknown. Possible mediators could be acidosis-regulated microRNAs (miR-7, miR-183, miR-203, miR-215). The aim of the study was therefore to analyze whether a change in the expression of these microRNAs has an impact on the tumor cell migration and adhesion. Studies were performed with AT1 rat prostate cancer cells which were incubated for 24 h at pH 7.4 or 6.6. Keeping AT1 tumor cells at low pH increased the migratory capacity by about 100%. But also the decrease of miR-203 and miR-215 expression (at normal pH) led to an increase in migration velocity by 50%. In contrast, cell adhesion was increased by about 75% at low pH. However, an increase in miR-215 expression at pH 6.6 reduced the adhesion by trend. These results clearly indicated that the extracellular pH has an impact on migration and adhesion of tumor cells. In this mechanism, pH-regulated microRNAs could play a role since changes in the expression of these microRNAs (especially miR-203) are also able to modulate the migratory behavior.


Asunto(s)
Acidosis , MicroARNs , Neoplasias de la Próstata , Acidosis/genética , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Neoplasias de la Próstata/genética , Ratas
7.
Adv Exp Med Biol ; 1269: 157-161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966211

RESUMEN

In comparison to normal tissue, solid tumors show an acidic extracellular pH, which results from hypoxia-induced glycolytic metabolism and the Warburg effect. Since acidosis modulates the expression of different microRNAs (e.g., miR-7, miR-183, miR-203, miR-215), microRNAs and their targets might be mediators between tumor acidosis and malignant behavior. The aim of this study was to investigate how modulation of these microRNAs affects the expression of their targets (Crem, cAMP-responsive element modulator; Gls2, glutaminase 2; Txnip, thioredoxin-interacting protein) in experimental tumors in vivo and whether these changes are acidosis dependent. The study was performed in two experimental tumor lines of the rat (AT-1 prostate carcinoma, Walker-256 mammary carcinoma). The results showed that all three targets were regulated by acidosis in vivo, Crem and Gls2 being downregulated and Txnip upregulated in both models. In AT-1 tumors at normal tumor pH, miR-203 overexpression increased Txnip expression by about 75%, whereas in Walker-256 tumors, miR-7 reduced protein expression. In more acidic tumors, no impact of microRNAs on Txnip expression was seen. On the other hand, Gls2 was significantly increased in acidic tumors by miR-183 or miR-7 overexpression (cell line dependent). As this increase was not present under control conditions, an acidosis-dependent effect can be assumed. These results indicate that tumor acidosis modulates the expression of targets of pH-sensitive microRNAs in experimental tumors. Especially the protein expression of Gls2 might be regulated via changes of microRNAs, which then affects the malignant progression of tumors.


Asunto(s)
Acidosis , MicroARNs , Neoplasias Experimentales , Neoplasias de la Próstata , Acidosis/genética , Animales , Proteínas de Ciclo Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Neoplasias de la Próstata/genética , Ratas
8.
Adv Exp Med Biol ; 1269: 179-183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966214

RESUMEN

Epithelial-mesenchymal transition (EMT), which is involved in metastasis formation, requires reprogramming of gene expression mediated by key EMT transcription factors. However, signals from the cellular microenvironment, including hypoxia, can also modulate the process of EMT. Hypoxia is often associated with a reduction in the extracellular pH of the tumor microenvironment (acidosis). Whether acidosis alone has an impact on the expression of the EMT markers E-cadherin, N-cadherin, and vimentin was studied in NCI-H358 lung cancer cells. Reducing extracellular pH decreased E-cadherin mRNA, while vimentin and N-cadherin mRNA were doubled. However, at the protein level, E-cadherin and N-cadherin were both reduced, and only vimentin was upregulated. E-cadherin and N-cadherin expression at the cell surface, which is the relevant parameter for cell-cell and cell-matrix interaction, decreased too. The reduction of cell surface proteins was due to diminished protein expression and not changes in cellular localization, since localization of EMT markers in general was not affected by acidosis. Acidosis also affected NCI-H358 cells functionally. Adhesion was decreased when the cells were primed in an acidic medium before measuring cell adherence, which is in line with the reduced expression of cadherins at the cell surface. Additionally, migration was decreased after acidic priming. A possible mechanism for the regulation of EMT markers involves the action of microRNA-203a (miR-203a). In NCI-H358 lung cancer cells, miR-203a expression was repressed by acidosis. Since a decrease in the level of miR-203a has been shown to induce EMT, it might be involved in the modulation of EMT marker expression, adhesion, and migration by the acidic tumor microenvironment in NCI-H358 lung cancer cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Biomarcadores , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética , Vimentina/genética , Vimentina/metabolismo
9.
Adv Exp Med Biol ; 1232: 277-282, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893421

RESUMEN

Acidification of the cellular microenvironment is found in different pathological states such as inflammation, ischemia and in solid tumors. It can affect cell function and phenotype, and by this aggravate the pathological process. Epithelial cells are a relevant functional part in several normal organs as well as in tumors and will thus be challenged by the acidic extracellular pH (acidosis). Therefore, the impact of acidosis on the expression of different inflammatory mediators (MCP-1, IL-6, osteopontin, iNOS, TNF-α, and COX-2), as well as the role of different signaling pathways regulating the expression, was studied in epithelial normal rat kidney cells (NRK-52E). Acidosis led to an increase in TNF-α expression but a down-regulation of MCP-1, iNOS and COX-2. Expression of IL-6 was only slightly modulated, while osteopontin was not regulated at all. Since acidosis activates ERK1/2 and p38 signaling in NRK-52E cells, the impact of MAP kinase signaling pathways on the expression of the inflammatory markers was analyzed. At normal pH, blocking ERK1/2 or p38 decreased the level of MCP-1, iNOS and partly TNF-α. However, the effect of acidosis on the expression of inflammatory mediators was not affected by inhibition of the MAP kinase pathways. In conclusion, our results show that an acidic microenvironment affects the transcriptional program of epithelial cells. Low pH mostly reduced the expression of pathological relevant genes and might thus repress inflammatory processes induced by epithelial cells.


Asunto(s)
Acidosis , Células Epiteliales , Regulación de la Expresión Génica , Mediadores de Inflamación , Proteínas Quinasas p38 Activadas por Mitógenos , Acidosis/metabolismo , Animales , Línea Celular , Quimiocina CCL2/genética , Ciclooxigenasa 2/genética , Células Epiteliales/metabolismo , Mediadores de Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Óxido Nítrico Sintasa de Tipo II/genética , Ratas , Factor de Necrosis Tumoral alfa/genética
10.
Adv Exp Med Biol ; 1072: 207-211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30178347

RESUMEN

Under pathological conditions like inflammation, ischemia or in solid tumors, parameters of the microenvironment like local oxygenation and extracellular pH show marked changes when compared to healthy tissue. The altered microenvironment affects cellular phenotype of omnipresent fibroblasts and immune cells. Recently, the impact of the microenvironment on the expression patterns of microRNAs, small non-coding RNAs that regulate gene expression on a post-transcriptional level, was discussed. Therefore, microRNAs might be the link between altered microenvironmental parameters and changes in cellular phenotype. In this study, the effect of hypoxia-induced extracellular acidosis (24 h pH 6.6) on microRNA expression in fibroblasts and macrophages was analyzed. MicroRNAs in rat fibroblasts (NRK-49F) were examined with the miScript miRNA PCR Array and changes in the expression validated by TaqMan qPCR. Subsequently, the identified microRNAs were analyzed in RAW 264.7 mouse macrophages. Nine out of 84 tested microRNAs were found to be acidosis-regulated in fibroblasts by miRNA PCR array, most of them up-regulated. Of those, the pH dependency could be validated by TaqMan qPCR for five of these nine microRNAs. When comparing these microRNAs in terms of their expression in macrophages, profound differences were observed. Thus, acidosis-induced alterations in the expression of microRNAs seem to be cell-type specific. Only the up-regulation of the miR-133b by low pH was seen in all normal cells, but not in tumor cells. As the identified microRNAs are involved in the regulation of proliferation, cell death and migration (amongst others), acidosis-induced changes in their expression might affect cellular behavior of fibroblasts and macrophages under pathological conditions. For instance the proto-oncogene c-Jun, which is a target of the miR-133b, was shown to be acidosis-regulated. Acidosis could regulate the biological behavior via miRNA-133b and c-Jun.


Asunto(s)
Acidosis/metabolismo , Hipoxia de la Célula/fisiología , Fibroblastos/metabolismo , Macrófagos/metabolismo , MicroARNs/biosíntesis , Animales , Ratones , Células RAW 264.7 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA