Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Neurol ; 30(4): 920-933, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36692250

RESUMEN

BACKGROUND AND PURPOSE: The pathophysiology of Parkinson's disease (PD) negatively affects brain network connectivity, and in the presence of brain white matter hyperintensities (WMHs) cognitive and motor impairments seem to be aggravated. However, the role of WMHs in predicting accelerating symptom worsening remains controversial. The objective was to investigate whether location and segmental brain WMH burden at baseline predict cognitive and motor declines in PD after 2 years. METHODS: Ninety-eight older adults followed longitudinally from Ontario Neurodegenerative Diseases Research Initiative with PD of 3-8 years in duration were included. Percentages of WMH volumes at baseline were calculated by location (deep and periventricular) and by brain region (frontal, temporal, parietal, occipital lobes and basal ganglia + thalamus). Cognitive and motor changes were assessed from baseline to 2-year follow-up. Specifically, global cognition, attention, executive function, memory, visuospatial abilities and language were assessed as were motor symptoms evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III, spatial-temporal gait variables, Freezing of Gait Questionnaire and Activities Specific Balance Confidence Scale. RESULTS: Regression analysis adjusted for potential confounders showed that total and periventricular WMHs at baseline predicted decline in global cognition (p < 0.05). Also, total WMH burden predicted the decline of executive function (p < 0.05). Occipital WMH volumes also predicted decline in global cognition, visuomotor attention and visuospatial memory declines (p < 0.05). WMH volumes at baseline did not predict motor decline. CONCLUSION: White matter hyperintensity burden at baseline predicted cognitive but not motor decline in early to mid-stage PD. The motor decline observed after 2 years in these older adults with PD is probably related to the primary neurodegenerative process than comorbid white matter pathology.


Asunto(s)
Disfunción Cognitiva , Trastornos Neurológicos de la Marcha , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sustancia Blanca , Humanos , Anciano , Sustancia Blanca/patología , Enfermedades Neurodegenerativas/patología , Ontario , Imagen por Resonancia Magnética/métodos , Cognición/fisiología , Disfunción Cognitiva/patología
2.
Magn Reson Imaging ; 92: 150-160, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753643

RESUMEN

PURPOSE: Magnetic resonance imaging (MRI) scanner-specific geometric distortions may contribute to scanner induced variability and decrease volumetric measurement precision for multi-site studies. The purpose of this study was to determine whether geometric distortion correction increases the precision of brain volumetric measurements in a multi-site multi-scanner study. METHODS: Geometric distortion variation was quantified over a one-year period at 10 sites using the distortion fields estimated from monthly 3D T1-weighted MRI geometrical phantom scans. The variability of volume and distance measurements were quantified using synthetic volumes and a standard quantitative MRI (qMRI) phantom. The effects of geometric distortion corrections on MRI derived volumetric measurements of the human brain were assessed in two subjects scanned on each of the 10 MRI scanners and in 150 subjects with cerebrovascaular disease (CVD) acquired across imaging sites. RESULTS: Geometric distortions were found to vary substantially between different MRI scanners but were relatively stable on each scanner over a one-year interval. Geometric distortions varied spatially, increasing in severity with distance from the magnet isocenter. In measurements made with the qMRI phantom, the geometric distortion correction decreased the standard deviation of volumetric assessments by 35% and distance measurements by 42%. The average coefficient of variance decreased by 16% in gray matter and white matter volume estimates in the two subjects scanned on the 10 MRI scanners. CONCLUSION: Geometric distortion correction using an up-to-date correction field is recommended to increase precision in volumetric measurements made from MRI images.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
3.
Front Psychiatry ; 12: 617997, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716819

RESUMEN

With improvements to both scan quality and facial recognition software, there is an increased risk of participants being identified by a 3D render of their structural neuroimaging scans, even when all other personal information has been removed. To prevent this, facial features should be removed before data are shared or openly released, but while there are several publicly available software algorithms to do this, there has been no comprehensive review of their accuracy within the general population. To address this, we tested multiple algorithms on 300 scans from three neuroscience research projects, funded in part by the Ontario Brain Institute, to cover a wide range of ages (3-85 years) and multiple patient cohorts. While skull stripping is more thorough at removing identifiable features, we focused mainly on defacing software, as skull stripping also removes potentially useful information, which may be required for future analyses. We tested six publicly available algorithms (afni_refacer, deepdefacer, mri_deface, mridefacer, pydeface, quickshear), with one skull stripper (FreeSurfer) included for comparison. Accuracy was measured through a pass/fail system with two criteria; one, that all facial features had been removed and two, that no brain tissue was removed in the process. A subset of defaced scans were also run through several preprocessing pipelines to ensure that none of the algorithms would alter the resulting outputs. We found that the success rates varied strongly between defacers, with afni_refacer (89%) and pydeface (83%) having the highest rates, overall. In both cases, the primary source of failure came from a single dataset that the defacer appeared to struggle with - the youngest cohort (3-20 years) for afni_refacer and the oldest (44-85 years) for pydeface, demonstrating that defacer performance not only depends on the data provided, but that this effect varies between algorithms. While there were some very minor differences between the preprocessing results for defaced and original scans, none of these were significant and were within the range of variation between using different NIfTI converters, or using raw DICOM files.

4.
J Magn Reson Imaging ; 51(5): 1454-1462, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31667941

RESUMEN

BACKGROUND: Arterial stiffness in large arteries is a risk factor for cerebral small vessel disease and neurodegeneration. The challenge of accessing intracranial pulsatility noninvasively is one reason few studies provide empirical insight on the relationship between large artery and tissue pulsatility in the human brain. PURPOSE: To investigate the association between the functional magnetic resonance imaging (fMRI)-derived cardiac-related pulsatility in the insular cortex and the ultrasound-derived pulsatility index in the middle cerebral artery (MCA-PI). STUDY TYPE: Cross-sectional. POPULATION: Younger adults (11; 25 ± 4 years) and older adults with and without cardiovascular risk factors (44; 70 ± 6 years). FIELD STRENGTH/SEQUENCE: T1 -weighted, fluid attenuated inversion recovery, and T2 *-weighted blood oxygenation level-dependent (BOLD) sequences at 3T. ASSESSMENT: MCA-PI and cardiac-related pulsatility were assessed at rest by transcranial Doppler ultrasound and BOLD fMRI, respectively. STATISTICAL TESTS: Multivariate analyses of covariance between MCA-PI and cardiac-related pulsatility. Analysis of variance was used to assess regional differences. RESULTS: MCA-PI was associated with cardiac-related insular pulsatility (P = 0.037), but not whole-brain pulsatility (P = 0.81). Left insular pulsatility was higher than right insular pulsatility (P < 0.01) and was associated with diastolic blood pressure (P = 0.028). DATA CONCLUSION: We show a correlation between ultrasound and fMRI measures of cerebrovascular pulsatility. This association provides insight into the transmission of pulsatile energy from large basal arteries at the Circle of Willis to downstream cerebrovascular beds and has implications for the utility of cardiac-related pulsatility as a potential marker for cerebral small vessel disease. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:1454-1462.


Asunto(s)
Circulación Cerebrovascular , Arteria Cerebral Media , Anciano , Velocidad del Flujo Sanguíneo , Corteza Cerebral , Estudios Transversales , Humanos , Arteria Cerebral Media/diagnóstico por imagen , Flujo Pulsátil , Ultrasonografía Doppler Transcraneal
5.
J Cereb Blood Flow Metab ; 39(9): 1737-1749, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29561225

RESUMEN

Arterial stiffness is linked to cerebral small vessel damage and neurodegeneration, but barriers to accessing deep cerebrovascular anatomy limit our ability to assess the brain. This study describes an adaptation of a cardiac-related scrubbing method as a means of generating blood oxygenation level-dependent pulsatility maps based on the cardiac cycle. We examine BOLD pulsatility at rest, based on the non-parametric deviation from null metric, as well as changes following acute physiological stress from 20 min of moderate-intensity cycling in 45 healthy adolescents. We evaluate the influence of repetition time (TR) and echo time (TE) using simulated and multi-echo empirical data, respectively. There were tissue-specific and voxel-wise BOLD pulsatility decreases 20 min following exercise cessation. BOLD pulsatility detection was comparable over a range of TR and TE values when scan volumes were kept constant; however, short TRs (≤500 ms) and TEs (∼14 ms) acquisitions would yield the most efficient detection. Results suggest cardiac-related BOLD pulsatility may represent a robust and easily adopted method of mapping cerebrovascular pulsatility with voxel-wise resolution.


Asunto(s)
Circulación Cerebrovascular , Ejercicio Físico , Oxígeno/sangre , Adolescente , Encéfalo/irrigación sanguínea , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Contracción Miocárdica , Descanso , Rigidez Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...