Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Metab Brain Dis ; 38(4): 1221-1238, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36729261

RESUMEN

Hepatic encephalopathy (HE) is a common neurological manifestation of liver cirrhosis and is characterized by an increase of ammonia in the brain accompanied by a disrupted neurotransmitter balance, including the GABAergic and glutamatergic systems. The aim of this study is to investigate metabolic abnormalities in the cerebello-thalamo-cortical system of HE patients using GABA-edited MRS and links between metabolite levels, disease severity, critical flicker frequency (CFF), motor performance scores, and blood ammonia levels. GABA-edited MRS was performed in 35 participants (16 controls, 19 HE patients) on a clinical 3 T MRI system. MRS voxels were placed in the right cerebellum, left thalamus, and left motor cortex. Levels of GABA+ and of other metabolites of interest (glutamine, glutamate, myo-inositol, glutathione, total choline, total NAA, and total creatine) were assessed. Group differences in metabolite levels and associations with clinical metrics were tested. GABA+ levels were significantly increased in the cerebellum of patients with HE. GABA+ levels in the motor cortex were significantly decreased in HE patients, and correlated with the CFF (r = 0.73; p < .05) and motor performance scores (r = -0.65; p < .05). Well-established HE-typical metabolite patterns (increased glutamine, decreased myo-inositol and total choline) were confirmed in all three regions and were closely linked to clinical metrics. In summary, our findings provide further evidence for alterations in the GABAergic system in the cerebellum and motor cortex in HE. These changes were accompanied by characteristic patterns of osmolytes and oxidative stress markers in the cerebello-thalamo-cortical system. These metabolic disturbances are a likely contributor to HE motor symptoms in HE. In patients with hepatic encephalopathy, GABA+ levels in the cerebello-thalamo-cortical loop are significantly increased in the cerebellum and significantly decreased in the motor cortex. GABA+ levels in the motor cortex strongly correlate with critical flicker frequency (CFF) and motor performance score (pegboard test tPEG), but not blood ammonia levels (NH3).


Asunto(s)
Encefalopatía Hepática , Humanos , Encefalopatía Hepática/metabolismo , Glutamina/metabolismo , Amoníaco , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Inositol , Ácido gamma-Aminobutírico/metabolismo , Colina/metabolismo
3.
Magn Reson Med ; 89(3): 1055-1067, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36416075

RESUMEN

PURPOSE: To improve the reliability of intravoxel incoherent motion (IVIM) model parameter estimation for the DWI in the kidney using a novel image downsampling expedited adaptive least-squares (IDEAL) approach. METHODS: The robustness of IDEAL was investigated using simulated DW-MRI data corrupted with different levels of Rician noise. Subsequently, the performance of the proposed method was tested by fitting bi- and triexponential IVIM model to in vivo renal DWI data acquired on a clinical 3 Tesla MRI scanner and compared to conventional approaches (fixed D* and segmented fitting). RESULTS: The numerical simulations demonstrated that the IDEAL algorithm provides robust estimates of the IVIM parameters in the presence of noise (SNR of 20) as indicated by relatively low absolute percentage bias (maximal sMdPB <20%) and normalized RMSE (maximal RMSE <28%). The analysis of the in vivo data showed that the IDEAL-based IVIM parameter maps were less noisy and more visually appealing than those obtained using the fixed D* and segmented methods. Further, coefficients of variation for nearly all IVIM parameters were significantly reduced in cortex and medulla for IDEAL-based biexponential (coefficients of variation: 4%-50%) and triexponential (coefficients of variation: 7.5%-75%) IVIM modelling compared to the segmented (coefficients of variation: 4%-120%) and fixed D* (coefficients of variation: 17%-174%) methods, reflecting greater accuracy of this method. CONCLUSION: The proposed fitting algorithm yields more robust IVIM parameter estimates and is less susceptible to poor SNR than the conventional fitting approaches. Thus, the IDEAL approach has the potential to improve the reliability of renal DW-MRI analysis for clinical applications.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Movimiento (Física) , Análisis de los Mínimos Cuadrados , Algoritmos , Riñón/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...