Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 566: 381-7, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16594176

RESUMEN

Protein C (PC) is an essential blood factor in the human blood coagulation cascade. PC can help achieve blood hemostasis in many deadly disease conditions such as sepsis, cancer, HIV, etc.; reduced oxygen transport due to blood agglutination within the body can cause tissue death and organ failure as a result of low oxygen transport. Our goal is to produce large quantities of low cost zymogen PC for the treatment and prevention of blood clotting resulting from many disease states, as well as provide an effective therapy for PC deficiency. Current studies show that Immobilized Metal Affinity Chromatography (IMAC) has high specificity and can be used for difficult separations among homologous proteins at relatively low cost compared to current methods, such as Immunoaffinity Chromatography. Thus, we are investigating the optimization of IMAC for the separation and purification of PC from Cohn fraction IV-I. Molecular interactions within the chromatography column involve many parameters that include: the use and type of chromatographic gel and buffer solution, the pH, temperature, metal ion, chelator, and the sequence and structure of the protein itself. These parameters all influence the protein's interaction with the column. Experimental equilibrium isotherms show that PC has primary and secondary binding characteristics, demonstrating that the interaction is not just a simple process of one protein binding to one metal ion. Understanding the thermodynamics of interfacial interaction between proteins and surface-bound Cu2+ is essential to optimizing IMAC for PC purification, as well as for separation of other proteins in general. Hence we are undertaking theoretical and experimental studies of IDA-Cu/PC adsorption. The differences in structures of PC and other critical homologous blood factors are examined using the protein visualization program Cn3D. A better understanding of the interfacial phenomena will help determine the most effective conditions to achieve our goal.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteína C/aislamiento & purificación , Adsorción , Sitios de Unión , Quelantes , Cobre , Histidina/química , Modelos Moleculares , Proteína C/química , Proteína C/uso terapéutico , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA