Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 109: 103779, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32543388

RESUMEN

The wave phenomenon in free surface media stems from the propagation of mode grouping. Due to the nature of propagation in a given medium, this phenomenon expresses different types of dependence on the medium's properties and represents its mechanical admittance. In contrast with body wave propagation, dependencies related to surface propagation in a medium can be described by spatial-temporal characteristics. These characteristics can be obtained by performing appropriate experiments and do not require prior knowledge of the physical properties of the medium. In this study, we propose an original surface wave investigation and a phenomenological analysis approach adapted to the mechano-bio-structural states evaluation of in vivo human skin. Two objectives are sought with the method proposed: the first concerns the development of a non-invasive device for generating and tracking surface waves in human skin called Free-Skin-Surface-Wave (FSSW); the second concerns the adaptation of the Multi-Chanel Analysis of Surface Waves (MASW) method to evaluate the mechano-bio-structural states of human cutaneous tissue in vivo on the basis of the propagating phenomena observed. As an illustration of the proposed method application, we have done an in vivo evaluation, on intern-forearm of female volunteers population. In addition, we proposed a study of the aging effect and a comparison with ultrasound B-Mode technique, to validate the method sensitivity to follow the mechano-morphological properties of the in vivo human skin. In this study, our medium of application was human skin in vivo, but it is conceivable to extend this application to other soft biological media.


Asunto(s)
Antebrazo , Piel , Femenino , Humanos
2.
J Mech Behav Biomed Mater ; 103: 103551, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32090946

RESUMEN

Skin ageing is a complex process which strongly impacts the three skin layers (epidermis, dermis, hypodermis) both functionally and structurally. Of particular interest are the effects of ageing on the dermis biomechanics and how this evolution can impact the reorganization of the cutaneous lines which compose the skin relief. It has been argued that the skin relief could reflect the underlying mechanical condition of the skin. Nevertheless, there is not yet conclusive evidence of the existence of such a link. This work aims at experimentally studying, in vivo, the correlation between the anisotropy of human skin biomechanics and skin topography as a function of ageing. The study was conducted on a panel of 20 men divided into 4 groups according to age (from 23 to 64 years old). The measurements were performed on the right volar forearm of each volunteer. For the biomechanical measurements, an innovative contactless bio-rheometer was developed. It allows access to the mechanical behaviour of the skin in several directions. This device generates an air blast without any contact with the skin area and measures its dynamic response (evaluation of speed of wave propagation) with a linear laser. Moreover, a turntable enables measurements to be made in different angular directions. To analyse the topography of skin relief, we proposed a new method, based on watershed and linear radon transformations. First, an optical analysis of a replica of the skin relief is performed. Then, from the skin image obtained, the density of the cutaneous lines is calculated in different directions using watersheld transformation. The orientation of the detected lines is then estimated with an algorithm based on linear radon transformation. The results observed show a good correlation between the skin relief and the mechanical properties of the skin all along the ageing process. For both topography and mechanical properties, there is a transition from an almost isotropic mechanical behaviour to an anisotropic one as a function of ageing process. Thus, we might conclude that the skin relief reflects the underlying mechanical conditions of the skin.


Asunto(s)
Fenómenos Fisiológicos de la Piel , Piel , Adulto , Envejecimiento , Anisotropía , Fenómenos Biomecánicos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
R Soc Open Sci ; 4(8): 170321, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28878982

RESUMEN

The human finger plays an extremely important role in tactile perception, but little is known about how age and gender affect its biophysical properties and their role in tactile perception. We combined studies on contact characteristics, mechanical properties and surface topography to understand age and gender effects on the human finger. The values obtained regarding contact characteristics (i.e. adhesive force) were significantly higher for women than for men. As for mechanical properties (i.e. Young's modulus E), a significant and positive correlation with age was observed and found to be higher for women. A positive correlation was observed between age and the arithmetic mean of surface roughness for men. However, an inverse age effect was highlighted for women. The age and gender effects obtained have never been reported previously in the literature. These results open new perspectives for understanding the weakening of tactile perception across ages and how it differs between men and women.

4.
Colloids Surf B Biointerfaces ; 150: 417-425, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27842928

RESUMEN

Tactile perception is one of the sensorial modes most stimulated by our daily environment. In particular, perceived softness is an important parameter for judging the sensory quality of surfaces and fabrics. Unfortunately, its assessment greatly depends on the tactile sense of each person, which in turn depends on many factors. Currently, the predominant method for evaluating the tactile perception of fabrics is the human handfeel panel. This qualitative approach does not permit the quantitative measure of touch feel perception. In this study, we present a new artificial finger device to investigate the tactile sensing of ten bathroom tissues. It enables simultaneously measuring the friction and vibrations caused when sliding an artificial finger on the surface of the tissue. The comparison between the results obtained with the artificial finger and the tactile perception evaluated using a handfeel panel showed that the artificial finger is able to separate the two parts of the tactile perception of bathroom tissues: softness and surface texture (velvetiness). The statistical analysis suggests that there is a good correlation between the vibrations measured with the artificial finger and the softness evaluated by the panel. It then shows that the friction measured by the artificial finger is related to the surface texture of a bathroom tissue. The ability of the artificial finger to mimic human touch is demonstrated. Finally, a Principal Component Analysis orders the signatures of the tactile perception of the bathroom tissues in four different groups.


Asunto(s)
Acústica , Dedos/fisiología , Papel , Percepción del Tacto , Adulto , Biomimética , Femenino , Fricción , Humanos , Masculino , Persona de Mediana Edad , Análisis de Componente Principal , Cuartos de Baño
5.
Reprod Nutr Dev ; 30(5): 551-76, 1990.
Artículo en Francés | MEDLINE | ID: mdl-2291805

RESUMEN

Alterations in lipids linked to intestinal maturation and enterocyte differentiation were reviewed. The 3 main lipid components of cell membranes, ie cholesterol, phospholipids and glycolipids, were examined. Cell phospholipid content increases from the crypts to the mid-villus, which accounts for membrane development and organelle growth in differentiating cells. Changes in the proportion of phospholipid polar head groups occur in brush border membrane during postnatal maturation of the small intestine. The possibility that phospholipid fatty acid composition in differentiating cells might be altered by dietary lipids is discussed. Cholesterol biosynthesis mainly occurs in crypt and lower villus cells whereas its absorption from luminal content and esterification into lipoproteins occur in upper villus mature cells. Cholesterol cell content increases in mature cells in comparison to immature cells on the one hand, and in the distal by comparison with proximal parts of the intestine on the other. Increasing cholesterol content is generally correlated with decreasing membrane fluidity, which in turn could modulate functional properties of the mucosa. Glycosphingolipids are mainly found in the brush border membrane, which contains 20-30% glycolipids by weight of total lipids. These components tend to reinforce the membrane stability and significantly contribute to the surface properties of epithelial cells. The latter undergo noticeable changes during cell differentiation and postnatal maturation. Significant changes in both the glycosidic and lipophilic parts of glycosphingolipid molecules occur in differentiating cells and are of possible importance in the process of mucosal maturation. It is possible that the addition of a terminal sialic acid (sialyltransferase activity) instead of a terminal galactose (galactosyltransferase) to an endogenous acceptor (lactosylceramide) could constitute an important event in the differentiation process, and may account for the increasing content of hematosides along the intestinal villus of rat. Alterations in lipid counterpart mainly consist of hydroxylation of fatty acids in hematosides during postnatal maturation or in glucosylceramides during cell differentiation. Collectively these intestinal lipid changes may contribute in part to the development of mucosal barrier, selective permeability and functional properties of the mature intestinal mucosa.


Asunto(s)
Mucosa Intestinal , Intestino Delgado , Metabolismo de los Lípidos , Animales , Diferenciación Celular , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Intestino Delgado/citología , Intestino Delgado/crecimiento & desarrollo , Intestino Delgado/metabolismo , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA