Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 18260, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309599

RESUMEN

We present here simulation results of the laser-driven acceleration of gold ions using the EPOCH code. Recently, an experiment reported the acceleration of gold ions up to 7 MeV/nucleon with a strong dependency of the charge-state distribution on target thickness and the detection of the highest charge states [Formula: see text]. Our simulations using a developmental branch of EPOCH (4.18-Ionization) show that collisional ionization is the most important cause of charge states beyond Z = 51 up to He-like Au.


Asunto(s)
Iones Pesados , Rayos Láser , Iones , Oro , Aceleración
2.
Sci Rep ; 12(1): 4784, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35315434

RESUMEN

In the past years, the interest in the laser-driven acceleration of heavy ions in the mass range of [Formula: see text] has been increasing due to promising application ideas like the fission-fusion nuclear reaction mechanism, aiming at the production of neutron-rich isotopes relevant for the astrophysical r-process nucleosynthesis. In this paper, we report on the laser acceleration of gold ions to beyond 7 MeV/u, exceeding for the first time an important prerequisite for this nuclear reaction scheme. Moreover, the gold ion charge states have been detected with an unprecedented resolution, which enables the separation of individual charge states up to 4 MeV/u. The recorded charge-state distributions show a remarkable dependency on the target foil thickness and differ from simulations, lacking a straight-forward explanation by the established ionization models.

3.
Phys Med Biol ; 66(13)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34062523

RESUMEN

In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position ofγ-quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr3:Ce and CeBr3. Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated137Cs and60Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 104events per second with only one GPU. Those improvements are crucial on the way to future clinicalin vivoapplicability of the CC for ion beam range verification.


Asunto(s)
Algoritmos , Conteo por Cintilación , Redes Neurales de la Computación , Fotones , Cintigrafía
4.
Rev Sci Instrum ; 89(1): 013301, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29390656

RESUMEN

Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

5.
Nat Commun ; 9(1): 423, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379024

RESUMEN

Often, the interpretation of experiments concerning the manipulation of the energy distribution of laser-accelerated ion bunches is complicated by the multitude of competing dynamic processes simultaneously contributing to recorded ion signals. Here we demonstrate experimentally the acceleration of a clean proton bunch. This was achieved with a microscopic and three-dimensionally confined near critical density plasma, which evolves from a 1 µm diameter plastic sphere, which is levitated and positioned with micrometer precision in the focus of a Petawatt laser pulse. The emitted proton bunch is reproducibly observed with central energies between 20 and 40 MeV and narrow energy spread (down to 25%) showing almost no low-energetic background. Together with three-dimensional particle-in-cell simulations we track the complete acceleration process, evidencing the transition from organized acceleration to Coulomb repulsion. This reveals limitations of current high power lasers and viable paths to optimize laser-driven ion sources.

6.
Med Phys ; 42(2): 567-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25652477

RESUMEN

PURPOSE: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. METHODS: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. RESULTS: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10(12) eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 µm and agreed with Geant4 simulations to better than 100 µm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. CONCLUSIONS: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound imaging. This acoustic range verification approach could offer the possibility of combining anatomical ultrasound and Bragg peak imaging, but further studies are required for translation of these findings to clinical application.


Asunto(s)
Acústica , Terapia de Protones , Radioterapia Guiada por Imagen/métodos , Método de Montecarlo , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/instrumentación , Transductores
7.
Science ; 337(6099): 1207-10, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22878498

RESUMEN

Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number Z = 114, 120, or 126 and neutron number N = 184 has been substantiated by the recent synthesis of new elements up to Z = 118. However, the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at N = 152.

8.
Phys Rev Lett ; 106(12): 122501, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517310

RESUMEN

The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85Mo and 87Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low α separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

9.
Nature ; 463(7282): 785-8, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20148034

RESUMEN

The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended decay chains introduces uncertainties that render the interpretation difficult. Here we report direct mass measurements of trans-uranium nuclides. Located at the farthest tip of the actinide species on the proton number-neutron number diagram, these nuclides represent the gateway to the predicted island of stability. In particular, we have determined the mass values of (252-254)No (atomic number 102) with the Penning trap mass spectrometer SHIPTRAP. The uncertainties are of the order of 10 keV/c(2) (representing a relative precision of 0.05 p.p.m.), despite minute production rates of less than one atom per second. Our experiments advance direct mass measurements by ten atomic numbers with no loss in accuracy, and provide reliable anchor points en route to the island of stability.

10.
Phys Rev Lett ; 105(25): 252501, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21231582

RESUMEN

The "island of inversion" nucleus 32 Mg has been studied by a (t, p) two neutron transfer reaction in inverse kinematics at REX-ISOLDE. The shape coexistent excited 0+ state in 32 Mg has been identified by the characteristic angular distribution of the protons of the Δ L=0 transfer. The excitation energy of 1058 keV is much lower than predicted by any theoretical model. The low γ-ray intensity observed for the decay of this 0+ state indicates a lifetime of more than 10 ns. Deduced spectroscopic amplitudes are compared with occupation numbers from shell-model calculations.

11.
Phys Rev Lett ; 103(1): 012501, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19659139

RESUMEN

The 1789 keV state in 30Mg was identified as the first excited 0+ state via its electric monopole (E0) transition to the ground state. The measured small value of rho2(E0,0(2)+-->0(1)+)=(26.2+/-7.5)x10(-3) implies within a two-level model a small mixing of competing configurations with largely different intrinsic quadrupole deformation near the neutron shell closure at N=20. Axially symmetric configuration mixing calculations identify the ground state of 30Mg to be based on neutron configurations below the N=20 shell closure, while the excited 0+ state mainly consists of two neutrons excited into the nu 1f7/2 orbital. The experimental result represents the first case where an E0 back decay from a strongly deformed second to the normal deformed first nuclear potential minimum well has been unambiguously identified, thus directly proving shape coexistence at the borderline of the much-debated "island of inversion."

12.
Phys Rev Lett ; 100(1): 012501, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18232754

RESUMEN

The masses of six neutron-deficient rare holmium and thulium isotopes close to the proton drip line were determined with the SHIPTRAP Penning trap mass spectrometer. For the first time the masses of the proton-unbound isotopes 144,145Ho and 147,148Tm were directly measured. The proton separation energies were derived from the measured mass values and compared to predictions from mass formulas. The new values of the proton separation energies are used to determine the location of the proton drip line for holmium and thulium more accurately.

13.
Phys Rev Lett ; 95(18): 182501, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16383897

RESUMEN

The excitation energy of the lowest-energy superdeformed band in 196Pb is established using the techniques of time-correlated gamma-ray spectroscopy. Together with previous measurements on 192Pb and 194Pb, this result allows superdeformed excitation energies, binding energies, and two-proton and two-neutron separation energies to be studied systematically, providing stringent tests for current nuclear models. The results are examined for evidence of a "superdeformed shell gap."

14.
Phys Rev Lett ; 94(17): 172501, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15904283

RESUMEN

We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin (nat)Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation gamma-ray yields the B(E2;0(+)gs-->2(+)1) value of 30Mg was determined to be 241(31)e2 fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg resides outside the "island of inversion."

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...