Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 19(1): 160, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31023213

RESUMEN

BACKGROUND: Sugarcane accumulates very high levels of sucrose in the culm. Elucidation of the molecular mechanisms that allows such high sucrose synthesis and accumulation (up to 650 mM) is made difficult by the complexity of the highly polyploid genome. Here we report the use of RNA Seq data to characterize the sucrose synthase (SuSy) genes expressed in the transcriptome of the mature sugarcane plant. RESULTS: Four SuSy gene families were identified in the sugarcane Iso-Seq long read transcriptome (SUGIT) through gene annotation of transcripts that mapped to reference SuSy genes from sorghum and maize. In total, 38, 19, 14, and 2 transcripts were identified for the four corresponding SuSy genes 1, 2, 4 and 7, respectively. Comparative studies using available SuSy genes from sorghum (1, 2, 4, 6, 7) and maize (1-7) revealed that the sugarcane SuSy genes were interrupted by multiple introns and that they share a highly conserved gene structure. Spatial expression of the four SuSy genes in sugarcane genotypes and in the progenitor species, Saccharum spontaneum and Saccharum officinarum, was studied in the leaf and root tissues and also in three regions of the culm tissue; top, middle and bottom internodes. Expression profiles indicated that all SuSy transcripts were differentially expressed between the top and bottom tissues, with high expression in the top tissues, lower expression in the bottom and moderate expression in the middle, indicating a gradient of SuSy activity in the sugarcane culm. Further, the root tissue had similar expression levels to that of the top internodes while leaf tissues showed lower expression. In the progenitors, SuSy7 was found to be highly expressed in S. officinarum while the other three SuSy genes had moderate expression in both the progenitors. CONCLUSIONS: The high expression of the SuSy genes in sink tissues, the top internodes and the roots suggests functional roles in sucrose utilization to support growth. The SuSy7 gene has not been previously reported in sugarcane. As sugarcane is unique in storing such high amounts of sucrose, it is possible that there are more SuSy genes/isoforms with specific expression patterns to be discovered in this complex system.


Asunto(s)
Genes de Plantas , Variación Genética , Glucosiltransferasas/genética , Especificidad de Órganos/genética , Saccharum/genética , Transcriptoma/genética , Exones/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Sistemas de Lectura Abierta/genética , Oryza/genética , Filogenia , Sorghum/genética , Zea mays/genética
2.
Front Plant Sci ; 9: 616, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868072

RESUMEN

Reference genome sequences have become key platforms for genetics and breeding of the major crop species. Sugarcane is probably the largest crop produced in the world (in weight of crop harvested) but lacks a reference genome sequence. Sugarcane has one of the most complex genomes in crop plants due to the extreme level of polyploidy. The genome of modern sugarcane hybrids includes sub-genomes from two progenitors Saccharum officinarum and S. spontaneum with some chromosomes resulting from recombination between these sub-genomes. Advancing DNA sequencing technologies and strategies for genome assembly are making the sugarcane genome more tractable. Advances in long read sequencing have allowed the generation of a more complete set of sugarcane gene transcripts. This is supporting transcript profiling in genetic research. The progenitor genomes are being sequenced. A monoploid coverage of the hybrid genome has been obtained by sequencing BAC clones that cover the gene space of the closely related sorghum genome. The complete polyploid genome is now being sequenced and assembled. The emerging genome will allow comparison of related genomes and increase understanding of the functioning of this polyploidy system. Sugarcane breeding for traditional sugar and new energy and biomaterial uses will be enhanced by the availability of these genomic resources.

3.
Heliyon ; 4(3): e00583, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29862346

RESUMEN

Sugarcane biomass has been used for sugar, bioenergy and biomaterial production. The majority of the sugarcane biomass comes from the culm, which makes it important to understand the genetic control of biomass production in this part of the plant. A meta-transcriptome of the culm was obtained in an earlier study by using about one billion paired-end (150 bp) reads of deep RNA sequencing of samples from 20 diverse sugarcane genotypes and combining de novo assemblies from different assemblers and different settings. Although many genes could be recovered, this resulted in a large combined assembly which created the need for clustering to reduce transcript redundancy while maintaining gene content. Here, we present a comprehensive analysis of the effect of different assembly settings and clustering methods on de novo assembly, annotation and transcript profiling focusing especially on the coding transcripts from the highly polyploid sugarcane genome. The new coding sequence-based transcript clustering resulted in a better representation of transcripts compared to the earlier approach, having 121,987 contigs, which included 78,052 main and 43,935 alternative transcripts. About 73%, 67%, 61% and 10% of the transcriptome was annotated against the NCBI NR protein database, GO terms, orthologous groups and KEGG orthologies, respectively. Using this set for a differential gene expression analysis between the young and mature sugarcane culm tissues, a total of 822 transcripts were found to be differentially expressed, including key transcripts involved in sugar/fiber accumulation in sugarcane. In the context of the lack of a whole genome sequence for sugarcane, the availability of a well annotated culm-derived meta-transcriptome through deep sequencing provides useful information on coding genes specific to the sugarcane culm and will certainly contribute to understanding the process of carbon partitioning, and biomass accumulation in the sugarcane culm.

4.
BMC Genomics ; 18(1): 909, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29178834

RESUMEN

BACKGROUND: Sugarcane is a major crop of the tropics cultivated mainly for its high sucrose content. The crop is genetically less explored due to its complex polyploid genome. Sucrose synthesis and accumulation are complex processes influenced by physiological, biochemical and genetic factors, and the growth environment. The recent focus on the crop for fibre and biofuel has led to a renewed interest on understanding the molecular basis of sucrose and biomass traits. This transcriptome study aimed to identify genes that are associated with and differentially regulated during sucrose synthesis and accumulation in the mature stage of sugarcane. Patterns of gene expression in high and low sugar genotypes as well as mature and immature culm tissues were studied using RNA-Seq of culm transcriptomes. RESULTS: In this study, 28 RNA-Seq libraries from 14 genotypes of sugarcane differing in their sucrose content were used for studying the transcriptional basis of sucrose accumulation. Differential gene expression studies were performed using SoGI (Saccharum officinarum Gene Index, 3.0), SAS (sugarcane assembled sequences) of sugarcane EST database (SUCEST) and SUGIT, a sugarcane Iso-Seq transcriptome database. In total, about 34,476 genes were found to be differentially expressed between high and low sugar genotypes with the SoGI database, 20,487 genes with the SAS database and 18,543 genes with the SUGIT database at FDR < 0.01, using the Baggerley's test. Further, differential gene expression analyses were conducted between immature (top) and mature (bottom) tissues of the culm. The DEGs were functionally annotated using GO classification and the genes consistently associated with sucrose accumulation were identified. CONCLUSIONS: The large number of DEGs may be due to the large number of genes that influence sucrose content or are regulated by sucrose content. These results indicate that apart from being a primary metabolite and storage and transport sugar, sucrose may serve as a signalling molecule that regulates many aspects of growth and development in sugarcane. Further studies are needed to confirm if sucrose regulates the expression of the identified DEGs or vice versa. The DEGs identified in this study may lead to identification of genes/pathways regulating sucrose accumulation and/or regulated by sucrose levels in sugarcane. We propose identifying the master regulators of sucrose if any in the future.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Saccharum/genética , Sacarosa/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Variación Genética , Genotipo , Saccharum/metabolismo , Análisis de Secuencia de ARN , Almidón/metabolismo , Azúcares/metabolismo
5.
BMC Genomics ; 18(1): 395, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28532419

RESUMEN

BACKGROUND: Despite the economic importance of sugarcane in sugar and bioenergy production, there is not yet a reference genome available. Most of the sugarcane transcriptomic studies have been based on Saccharum officinarum gene indices (SoGI), expressed sequence tags (ESTs) and de novo assembled transcript contigs from short-reads; hence knowledge of the sugarcane transcriptome is limited in relation to transcript length and number of transcript isoforms. RESULTS: The sugarcane transcriptome was sequenced using PacBio isoform sequencing (Iso-Seq) of a pooled RNA sample derived from leaf, internode and root tissues, of different developmental stages, from 22 varieties, to explore the potential for capturing full-length transcript isoforms. A total of 107,598 unique transcript isoforms were obtained, representing about 71% of the total number of predicted sugarcane genes. The majority of this dataset (92%) matched the plant protein database, while just over 2% was novel transcripts, and over 2% was putative long non-coding RNAs. About 56% and 23% of total sequences were annotated against the gene ontology and KEGG pathway databases, respectively. Comparison with de novo contigs from Illumina RNA-Sequencing (RNA-Seq) of the internode samples from the same experiment and public databases showed that the Iso-Seq method recovered more full-length transcript isoforms, had a higher N50 and average length of largest 1,000 proteins; whereas a greater representation of the gene content and RNA diversity was captured in RNA-Seq. Only 62% of PacBio transcript isoforms matched 67% of de novo contigs, while the non-matched proportions were attributed to the inclusion of leaf/root tissues and the normalization in PacBio, and the representation of more gene content and RNA classes in the de novo assembly, respectively. About 69% of PacBio transcript isoforms and 41% of de novo contigs aligned with the sorghum genome, indicating the high conservation of orthologs in the genic regions of the two genomes. CONCLUSIONS: The transcriptome dataset should contribute to improved sugarcane gene models and sugarcane protein predictions; and will serve as a reference database for analysis of transcript expression in sugarcane.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Poliploidía , Isoformas de ARN/genética , Saccharum/genética , Análisis de Secuencia de ARN , Empalme Alternativo , Etiquetas de Secuencia Expresada/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , ARN Mensajero/genética
6.
Appl Biochem Biotechnol ; 181(4): 1270-1282, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27761796

RESUMEN

Sugarcane (Saccharum spp.) is one of the highest biomass-producing plant and the best lignocellulosic feedstock for ethanol production. To achieve more efficient conversion of biomass to ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Therefore, with this objective, here, we report a systematic study on lignin content, deposition, identification, and cloning of genes involved in lignin biosynthesis and their differential expression in five sugarcane clones, EC11003, EC11010, IK 76-91, IK 76-99, and Co 86032. Lignin content among the clones varied from 26.87 to 23.19 % with the highest in the clone EC11010 and the lowest in high sugar Co86032. Lignin deposition studied through phloroglucinol staining of the cell walls implied that the sclerenchyma cells of the energy canes (EC11010 and EC11003) have more lignin deposition followed by the Erianthus (IK 76-91 and IK 76-99) clones whereas Co86032 has the minimum amount of lignin deposition. We cloned partial coding regions of important genes of lignification COMT (650 bp), CCR (332 bp), and PAL (650 bp) from Erianthus, wild relative of sugarcane followed by the expression analysis through real-time PCR. Differential expression analysis showed high level of expression for the three genes in the energy cane EC11010.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genotipo , Lignina/metabolismo , Saccharum/genética , Saccharum/metabolismo , Secuencia de Aminoácidos , Pared Celular/metabolismo , Clonación Molecular , Saccharum/citología , Saccharum/enzimología , Análisis de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...