Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1199748, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662143

RESUMEN

Commercial sugarcane hybrids are derivatives from Saccharum officinarum and Saccharum spontaneum hybrids containing the full complement of S. officinarum and a few S. spontaneum chromosomes and recombinants with favorable agronomic characters from both the species. The combination of the two sub-genomes in varying proportions in addition to the recombinants presents a challenge in the study of gene expression and regulation in the hybrid. We now report the transcriptome analysis of the two progenitor species and a modern commercial sugarcane hybrid through long read sequencing technology. Transcripts were profiled in the two progenitor species S. officinarum (Black Cheribon), and S. spontaneum (Coimbatore accession) and a recent high yielding, high sugar variety Co 11015. The composition and contribution of the progenitors to a hybrid with respect to sugar, biomass, and disease resistance were established. Sugar related transcripts originated from S. officinarum while several stress and senescence related transcripts were from S. spontaneum in the hybrid. The hybrid had a higher number of transcripts related to sugar transporters, invertases, transcription factors, trehalose, UDP sugars, and cellulose than the two progenitor species. Both S. officinarum and the hybrid had an abundance of novel genes like sugar phosphate translocator, while S. spontaneum had just one. In general, the hybrid shared a larger number of transcripts with S. officinarum than with S. spontaneum, reflecting the genomic contribution, while the progenitors shared very few transcripts between them. The common isoforms among the three genotypes and unique isoforms specific to each genotype indicate that there is a high scope for improvement of the modern hybrids by utilizing novel gene isoforms from the progenitor species.

2.
Genes (Basel) ; 14(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37372327

RESUMEN

Plant nuclear factor (NF-Y) is a transcriptional activating factor composed of three subfamilies: NF-YA, NF-YB, and NF-YC. These transcriptional factors are reported to function as activators, suppressors, and regulators under different developmental and stress conditions in plants. However, there is a lack of systematic research on the NF-Y gene subfamily in sugarcane. In this study, 51 NF-Y genes (ShNF-Y), composed of 9 NF-YA, 18 NF-YB, and 24 NF-YC genes, were identified in sugarcane (Saccharum spp.). Chromosomal distribution analysis of ShNF-Ys in a Saccharum hybrid located the NF-Y genes on all 10 chromosomes. Multiple sequence alignment (MSA) of ShNF-Y proteins revealed conservation of core functional domains. Sixteen orthologous gene pairs were identified between sugarcane and sorghum. Phylogenetic analysis of NF-Y subunits of sugarcane, sorghum, and Arabidopsis showed that ShNF-YA subunits were equidistant while ShNF-YB and ShNF-YC subunits clustered distinctly, forming closely related and divergent groups. Expression profiling under drought treatment showed that NF-Y gene members were involved in drought tolerance in a Saccharum hybrid and its drought-tolerant wild relative, Erianthus arundinaceus. ShNF-YA5 and ShNF-YB2 genes had significantly higher expression in the root and leaf tissues of both plant species. Similarly, ShNF-YC9 had elevated expression in the leaf and root of E. arundinaceus and in the leaf of a Saccharum hybrid. These results provide valuable genetic resources for further sugarcane crop improvement programs.


Asunto(s)
Saccharum , Saccharum/genética , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA