Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1286694, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249804

RESUMEN

From 2012 to 2023, the Malaria Research and Training Center (MRTC), based out of the University of Sciences, Techniques and Technologies of Bamako (USTTB), was part of the Target Malaria research consortium working towards developing novel gene drive-based tools for controlling populations of malaria vector mosquitoes. As part of this work, Target Malaria Mali has undertaken a range of in-depth engagement activities with the communities where their research is conducted and with other stakeholders nationally. These activities were meant to ensure that the project's activities took place with the agreement of those communities, and that those communities were able to play a role in shaping the project's approach to ensure that its eventual outcomes were in line with their needs and concerns. This paper aims to conduct a critical assessment of those 10 years of stakeholder engagement in order to identify good practices which can inform future engagement work on gene drive research in West Africa. It sets out a range of approaches and practices that enabled the Target Malaria Mali team to engage a variety of stakeholders, to share information, collect feedback, and determine community agreement, in a manner that was inclusive, effective, and culturally appropriate. These can be useful tools for those working on gene drive research and other area-wide vector control methods in West African contexts to ensure that their research is aligned with the interests of the communities who are intended to be its ultimate beneficiaries, and to allow those communities to play a meaningful role in the research process.

2.
iScience ; 25(11): 105423, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388962

RESUMEN

The world's biodiversity is in crisis. Synthetic biology has the potential to transform biodiversity conservation, both directly and indirectly, in ways that are negative and positive. However, applying these biotechnology tools to environmental questions is fraught with uncertainty and could harm cultures, rights, livelihoods, and nature. Decisions about whether or not to use synthetic biology for conservation should be understood alongside the reality of ongoing biodiversity loss. In 2022, the 196 Parties to the United Nations Convention on Biological Diversity are negotiating the post-2020 Global Biodiversity Framework that will guide action by governments and other stakeholders for the next decade to conserve the worlds' biodiversity. To date, synthetic biologists, conservationists, and policy makers have operated in isolation. At this critical time, this review brings these diverse perspectives together and emerges out of the need for a balanced and inclusive examination of the potential application of these technologies to biodiversity conservation.

3.
Malar J ; 21(1): 225, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35870909

RESUMEN

Gene drive mosquitoes are increasingly considered a potential transformational tool for vector control of malaria mosquitoes. As part of efforts to promote responsible research in this field, a number of guidance documents have been published by the World Health Organization, National Academies and expert groups. While virtually all recent guidance documents on gene drive research stress the importance of stakeholder engagement activities, no specific guidelines on implementing them have been established. Target Malaria, a not-for-profit research consortium developing a vector-control gene drive approach to eliminate malaria, has reflected on how its stakeholder engagement strategy translates engagement guidance documents into practice. The project analysed and addressed the tension between the context specificities and the international recommendations. The engagement strategy combines published recommendations for responsible gene drive research, information collected from the local context where the project operates and a set of principles guiding the choices made. This strategy was first developed during the early phases of the project's research, years ahead of any activities with gene drive mosquitoes in those countries of operations. These earlier activities, and their related engagement, allow the project to develop and adapt an engagement strategy appropriate for potential gene drive research in its field site countries. This paper offers a description of a stakeholder engagement strategy operationalization based on (1) adaptation to stakeholder preferences, (2) inclusiveness and (3) empowerment and accountability. The authors hope to offer concrete examples to support other projects with the development and implementation of their engagement strategies with particular attention to the co-development principle.


Asunto(s)
Culicidae , Tecnología de Genética Dirigida , Malaria , África , Animales , Humanos , Malaria/prevención & control , Mosquitos Vectores/genética , Participación de los Interesados
4.
Malar J ; 21(1): 35, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123487

RESUMEN

Progress in gene drive research has engendered a lively discussion about community engagement and the ethical standards the work hinges on. While there is broad agreement regarding ethical principles and established best practices for conducting clinical public health research, projects developing area-wide vector control technologies and initiating ambitious engagement strategies raise specific questions: who to engage, when to engage, and how? When responding to these fundamental questions, with few best practices available for guidance, projects need to reflect on and articulate the ethical principles that motivate and justify their approach. Target Malaria is a not-for-profit research consortium that aims to develop and share malaria control and elimination technology. The consortium is currently investigating the potential of a genetic technique called gene drive to control populations of malaria vectoring mosquito species Anopheles gambiae. Due to the potentially broad geographical, environmental impact of gene drive technology, Target Malaria has committed to a robust form of tailored engagement with the local communities in Burkina Faso, Mali, and Uganda, where research activities are currently taking place. This paper presents the principles guiding Target Malaria's engagement strategy. Herein the authors (i) articulate the principles; (ii) explain the rationale for selecting them; (iii) share early lessons about the application of the principles. Since gene drive technology is an emerging technology, with few best practices available for guidance, the authors hope by sharing these lessons, to add to the growing literature regarding engagement strategies and practices for area-wide vector control, and more specifically, for gene drive research.


Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Malaria , Animales , Anopheles/genética , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Salud Pública
5.
Malar J ; 20(1): 395, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627240

RESUMEN

BACKGROUND: Innovative tools are needed to complement the existing approach for malaria elimination. Gene drive mosquitoes are one potential new technology in the control of malaria vectors. Target Malaria is one of the research projects developing this technology, and in July 2019, the project proceeded to an important step for this evaluation pathway: the small-scale release of non-gene drive sterile male mosquitoes in a village in Burkina Faso. In addition to the entomological and laboratory work to prepare for this important milestone, significant community and stakeholder engagement work was done. The existing guidelines on gene drive mosquito provide an overall framework for such engagement work. However, they do not provide a road map on how to proceed or what benchmarks should be used to assess this work. METHODS: This study provides a review of engagement activities relevant to field trials on non-gene drive genetically-modified mosquitoes as well as an assessment framework-using both qualitative and quantitative studies as well as an audit procedure. The latter was implemented to evaluate whether the release activities could proceed with the appropriate level of agreement from the community. RESULTS: This paper shows the importance of this first phase of work to innovate and learn about engagement processes for responsible research in the field of genetic approaches for malaria vector control. The function of these assessments is crucial for the learning agenda. The assessments demonstrated ways to increase understanding and ensure effective progress with field studies and, therefore, the pathway for responsible research. CONCLUSION: Gene drive technology is increasingly considered as a promising approach to control vector borne diseases, in particular malaria. Stakeholders' involvement in this research process is one of the recurring requirements in international guidance documents. With this paper Target Malaria offers an opportunity to explore the practical achievements and challenges of stakeholder engagement during early phases of a technology evaluation, and in particular how it implemented an assessment framework to learn from its experience.


Asunto(s)
Tecnología de Genética Dirigida , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Burkina Faso , Comprensión , Tecnología de Genética Dirigida/métodos , Tecnología de Genética Dirigida/normas , Infertilidad Masculina , Conocimiento , Malaria/transmisión , Masculino , Auditoría Médica/métodos , Participación de los Interesados
6.
Gates Open Res ; 5: 19, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33884362

RESUMEN

Gene drive research is progressing towards future field evaluation of modified mosquitoes for malaria control in sub-Saharan Africa. While many literature sources and guidance point to the inadequacy of individual informed consent for any genetically modified mosquito release, including gene drive ones, (outside of epidemiological studies that might require blood samples) and at the need for a community-level decision, researchers often find themselves with no specific guidance on how that decision should be made, expressed and by whom. Target Malaria, the Kenya Medical Research Institute and the Pan African Mosquito Control Association co-organised a workshop with researchers and practitioners on this topic to question the model proposed by Target Malaria in its research so far that involved the release of genetically modified sterile male mosquitoes and how this could be adapted to future studies involving gene drive mosquito releases for them to offer reflections about potential best practices. This paper shares the outcomes of that workshop and highlights the remaining topics for discussion before a comprehensive model can be designed.

7.
Malar J ; 20(1): 53, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478519

RESUMEN

Stakeholder engagement is an essential pillar for the development of innovative public health interventions, including genetic approaches for malaria vector control. Scientific terminologies are mainly lacking in local languages, yet when research activities involve international partnership, the question of technical jargon and its translation is crucial for effective and meaningful communication with stakeholders. Target Malaria, a not-for-profit research consortium developing innovative genetic approaches to malaria vector control, carried out a linguistic exercise in Mali, Burkina Faso and Uganda to establish the appropriate translation of its key terminology to local languages of sites where the teams operate. While reviewing the literature, there was no commonly agreed approach to establish such glossary of technical terms in local languages of the field sites where Target Malaria operates. Because of its commitment to the value of co-development, Target Malaria decided to apply this principle for the linguistic work and to take the opportunity of this process to empower communities to take part in the dialogue on innovative vector control. The project worked with linguists from other institutions (whether public research ones or private language centre) who developed a first potential glossary in the local language after better understanding the project scientific approach. This initial glossary was then tested during focus groups with community members, which significantly improved the proposed translations by making them more appropriate to the local context and cultural understanding. The stepwise process revealed the complexity and importance of elaborating a common language with communities as well as the imbrication of language with cultural aspects. This exercise demonstrated the strength of a co-development approach with communities and language experts as a way to develop knowledge together and to tailor communication to the audience even in the language used.


Asunto(s)
Anopheles/genética , Diccionarios como Asunto , Técnicas Genéticas , Malaria/prevención & control , Mosquitos Vectores/genética , Salud Pública/métodos , Participación de los Interesados , Animales , Burkina Faso , Femenino , Humanos , Lingüística , Malaria/parasitología , Masculino , Malí , Control de Mosquitos , Mosquitos Vectores/parasitología , Uganda
8.
Wellcome Open Res ; 5: 173, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954016

RESUMEN

The progress in gene drive research has made the possibility of a future release in the environment probable. This prospect is raising new questions related to the adequacy of the policy frameworks in place to manage and regulate the research and its outcomes responsibly. A number of international mechanisms are exploring how to evaluate this technology. Amongst them, the Convention of Biological Diversity and the Cartagena Protocol, the review mechanisms of the World Health Organisation, and the International Union for Conservation of Nature are offering international fora for dialogue, while regional entities, such as the African Union, are developing specific frameworks to build their preparedness for oversight of gene drive organisms. In this manuscript, we review the existing regulatory landscape around gene drive research and map areas of convergence and divergence, as well as gaps in relation to guidelines for community engagement in gene drive research.

9.
Wellcome Open Res ; 5: 244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34095505

RESUMEN

While there are both practical and ethical reasons for public engagement in science and innovation, real-world detailed examples of engagement practice and the lessons to come from these are still hard to find. This paper showcases three contextually diverse case studies of engagement practice. Case 1 recounts the experiences of a government-funded initiative to involve scientists and policy makers as science communicators for the purpose of engaging the Argentine public on gene editing. Case 2 describes the research methodologies used to elicit diverse stakeholder views in the face of political uncertainty and institutional distrust in India. Finally, case 3 unpacks the tensions and gaps with existing international guidelines for ensuring local voices are respected in community decision-making in Burkina Faso. Each case shares its own compelling rationale for selecting the engagement method chosen and details the challenges encountered along the way. Each case shares its vision for creating legitimate opportunities for broader societal involvement in the planning, conduct and delivery of responsible science. These cases demonstrate the nuances, sensitivities and challenges of engaging with publics and broader stakeholders in discussions about genome editing for human benefit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...