Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 278: 119510, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33865879

RESUMEN

Currently, the world has been devastated by an unprecedented pandemic in this century. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), has been causing disorders, dysfunction and morphophysiological alterations in multiple organs as the disease evolves. There is a great scientific community effort to obtain a therapy capable of reaching the multiple affected organs in order to contribute for tissue repair and regeneration. In this regard, mesenchymal stem cells (MSCs) have emerged as potential candidates concerning the promotion of beneficial actions at different stages of COVID-19. MSCs are promising due to the observed therapeutic effects in respiratory preclinical models, as well as in cardiac, vascular, renal and nervous system models. Their immunomodulatory properties and secretion of paracrine mediators, such as cytokines, chemokines, growth factors and extracellular vesicles allow for long range tissue modulation and, particularly, blood-brain barrier crossing. This review focuses on SARS-CoV-2 impact to lungs, kidneys, heart, vasculature and central nervous system while discussing promising MSC's therapeutic mechanisms in each tissue. In addition, MSC's therapeutic effects in high-risk groups for COVID-19, such as obese, diabetic and hypertensive patients are also explored.


Asunto(s)
COVID-19/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , COVID-19/inmunología , COVID-19/patología , Humanos , Inmunomodulación , Células Madre Mesenquimatosas/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación
2.
J Nutr Biochem ; 29: 124-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26608021

RESUMEN

Several studies have demonstrated that overnutrition during early postnatal period can increase the long-term risk of developing obesity and cardiac disorders, yet the short-term effects of postnatal overfeeding in cardiac metabolism remains unknown. The aim of our study was to investigate the cardiac metabolism of weaned mice submitted to overnutrition during lactation, particularly as to mitochondrial function, substrate preference and insulin signaling. Postnatal overfeeding was induced by litter size reduction in mice at postnatal day 3. At 21 days of age (weaning), mice in the overfed group (OG) presented biometric and biochemical parameters of obesity, including increased body weight, visceral fat, liver weight and increased left ventricle weight/tibia length ratio; indicating cardiac hypertrophy, hyperglycemia, hyperinsulinemia and increased liver glycogen content compared to control group. In the heart, we detected impaired insulin signaling, mainly due to decreased IRß, pTyr-IRS1, PI3K, GLUT4 and pAkt/Akt and increased PTP1B, GLUT1 and pAMPKα/AMPKα content. Activities of lactate dehydrogenase and citrate synthase were increased, accompanied by enhanced carbohydrate oxidation, as observed by high-resolution respirometry. Moreover, OG hearts had lower CPT1, PPARα and increased UCP2 mRNA expression, associated with increased oxidative stress (4-HNE content), BAX/BCL2 ratio and cardiac fibrosis. Ultrastructural analysis of OG hearts demonstrated mild mitochondrial damage without alterations in OXPHOS complexes. In conclusion, overnutrition during early life induces short-term metabolic disturbances, impairment in heart insulin signaling, up-regulates GLUT-1 and switch cardiac fuel preference in juvenile mice.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Transportador de Glucosa de Tipo 1/metabolismo , Insulina/metabolismo , Lactancia , Mitocondrias Cardíacas/metabolismo , Hipernutrición , Transducción de Señal , Regulación hacia Arriba , Animales , Ratones , Oxidación-Reducción
3.
J Nutr Biochem ; 25(1): 50-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24314865

RESUMEN

Nutritional transition has contributed to growing obesity, mainly by changing eating habits of the population. The mechanisms by which diet-induced obesity leads to cardiac injury are not completely understood, but it is known that obesity is associated to impaired cardiac function and energy metabolism, increasing morbidity and mortality. Therefore, our study aimed to investigate the mechanisms underlying cardiac metabolism impairment related to Western diet-induced obesity. After weaning, male Swiss mice were fed a Western diet for 16 weeks in order to induce obesity. After this period, the content of proteins involved in heart energy metabolism GLUT1, cytosolic lysate and plasma membrane GLUT4, AMPK, pAMPK, IRß, IRS-1, PGC-1α, CPT1 and UCP2 was evaluated. Also, the oxidative phosphorylation of myocardial fibers was measured by high-resolution respirometry. Mice in the Western diet group (WG) presented altered biometric parameters compared to those in control group, including higher body weight, increased myocardial lipid deposition and glucose intolerance, which demonstrate the obesogenic role of Western diet. WG presented increased CPT1 and UCP2 contents and decreased IRS-1, plasma membrane GLUT4 and PGC-1α contents. In addition, WG presented cardiac mitochondrial dysfunction and reduced biogenesis, demonstrating a lower capacity of carbohydrates and fatty acid oxidation and also decreased coupling between oxidative phosphorylation and adenosine triphosphate synthesis. Cardiac metabolism impairment related to Western diet-induced obesity is probably due to damaged myocardial oxidative capacity, reduced mitochondrial biogenesis and mitochondria uncoupling, which compromise the bioenergetic metabolism of heart.


Asunto(s)
Dieta/efectos adversos , Metabolismo Energético , Corazón/fisiopatología , Adenosina Trifosfato/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Obesos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Recambio Mitocondrial , Miocardio , Fosforilación Oxidativa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Desacopladora 2 , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...