Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 7(7): 2990-2997, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33651947

RESUMEN

Advanced in vitro models called "organ-on-a-chip" can mimic the specific cellular environment found in various tissues. Many of these models include a thin, sometimes flexible, membrane aimed at mimicking the extracellular matrix (ECM) scaffold of in vivo barriers. These membranes are often made of polydimethylsiloxane (PDMS), a silicone rubber that poorly mimics the chemical and physical properties of the basal membrane. However, the ECM and its mechanical properties play a key role in the homeostasis of a tissue. Here, we report about biological membranes with a composition and mechanical properties similar to those found in vivo. Two types of collagen-elastin (CE) membranes were produced: vitrified and nonvitrified (called "hydrogel membrane"). Their mechanical properties were characterized using the bulge test method. The results were compared using atomic force microscopy (AFM), a standard technique used to evaluate the Young's modulus of soft materials at the nanoscale. Our results show that CE membranes with stiffnesses ranging from several hundred of kPa down to 1 kPa can be produced by tuning the CE ratio, the production mode (vitrified or not), and/or certain parameters such as temperature. The Young's modulus can easily be determined using the bulge test. This method is a robust and reproducible to determine membrane stiffness, even for soft membranes, which are more difficult to assess by AFM. Assessment of the impact of substrate stiffness on the spread of human fibroblasts on these surfaces showed that cell spread is lower on softer surfaces than on stiffer surfaces.


Asunto(s)
Matriz Extracelular , Dispositivos Laboratorio en un Chip , Membrana Celular , Módulo de Elasticidad , Humanos , Microscopía de Fuerza Atómica
2.
Commun Biol ; 4(1): 168, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547387

RESUMEN

The air-blood barrier with its complex architecture and dynamic environment is difficult to mimic in vitro. Lung-on-a-chips enable mimicking the breathing movements using a thin, stretchable PDMS membrane. However, they fail to reproduce the characteristic alveoli network as well as the biochemical and physical properties of the alveolar basal membrane. Here, we present a lung-on-a-chip, based on a biological, stretchable and biodegradable membrane made of collagen and elastin, that emulates an array of tiny alveoli with in vivo-like dimensions. This membrane outperforms PDMS in many ways: it does not absorb rhodamine-B, is biodegradable, is created by a simple method, and can easily be tuned to modify its thickness, composition and stiffness. The air-blood barrier is reconstituted using primary lung alveolar epithelial cells from patients and primary lung endothelial cells. Typical alveolar epithelial cell markers are expressed, while the barrier properties are preserved for up to 3 weeks.


Asunto(s)
Elasticidad/fisiología , Dispositivos Laboratorio en un Chip , Pulmón/citología , Membranas Artificiales , Alveolos Pulmonares/fisiología , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/fisiología , Barrera Alveolocapilar/citología , Barrera Alveolocapilar/fisiología , Comunicación Celular/fisiología , Permeabilidad de la Membrana Celular/fisiología , Técnicas de Cocultivo/instrumentación , Técnicas de Cocultivo/métodos , Humanos , Pulmón/fisiología , Microtecnología , Cultivo Primario de Células/instrumentación , Cultivo Primario de Células/métodos , Alveolos Pulmonares/citología , Estrés Mecánico , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA