Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 112(9): e35482, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39269164

RESUMEN

The stromal vascular fraction (SVF) is a derivate of fat tissue comprising both adipose-derived mesenchymal stem cells and endothelial cells and serves as a promising cell source for engineering vascularized bone tissues. Its combination with osteoconductive biphasic calcium phosphate (BCP) ceramic may represent a point-of-care agent for bone reconstruction. Here we assessed the proliferation and osteogenic differentiation capacities of SVF on 3D printed BCP implants, in comparison with isolated adipose-derived mesenchymal stem cells (AD-MSCs). AD-MSCs and SVF isolated from human donors were seeded on plastic or 3D printed BCP ceramics with sinusoidal or gyroid macrotopography and cultured in the presence or absence of osteogenic factors. Vascular, hematopoietic and MSC surface markers were assessed by flow cytometry whereas osteogenic activity was investigated through alizarin red staining and alkaline phosphatase activity. Osteogenic factors were necessary to trigger osteogenic activity when cells were cultured on plastic, without significant difference observed between the two cell populations. Interestingly, osteogenic activity was observed on BCP implants in the absence of differentiation factors, without significant difference in level activity between the two cell populations and macrotopography. This study offers supportive data for the use of combined BCP scaffolds with SVF in a perspective of a one-step surgical procedure for bone regeneration.


Asunto(s)
Diferenciación Celular , Cerámica , Células Madre Mesenquimatosas , Osteogénesis , Impresión Tridimensional , Humanos , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Cerámica/farmacología , Cerámica/química , Hidroxiapatitas/química , Hidroxiapatitas/farmacología , Andamios del Tejido/química , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Cultivadas
2.
Biochimie ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094823

RESUMEN

To ensure selective targeting based on membrane fluidity and physico-chemical compatibility between the biological membrane of the target cell and the lipid membrane of the liposomes carriers. Lipid-based carriers as liposomes with varying membrane fluidities were designed for delivering vincristine, an anti-tumor compound derived from Madagascar's periwinkle. Liposomes, loaded with vincristine, were tested on prostate, colon, and breast cancer cell lines alongside non-tumor controls. Results showed that vincristine-loaded liposomes with fluid membranes significantly decreased the viability of cancer cell lines compared to controls. Confocal microscopy revealed the intracellular release of vincristine, evidenced by disrupted mitosis-specific labeling of actin filaments in metastatic prostate cell lines. This highlights the crucial role of membrane fluidity in the development of lipid-based drug carriers, offering a promising and cost-effective option for targeting cancer cells as an alternative to conventional strategies.

3.
Sci Rep ; 14(1): 11003, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744985

RESUMEN

The future of organ and tissue biofabrication strongly relies on 3D bioprinting technologies. However, maintaining sterility remains a critical issue regardless of the technology used. This challenge becomes even more pronounced when the volume of bioprinted objects approaches organ dimensions. Here, we introduce a novel device called the Flexible Unique Generator Unit (FUGU), which is a unique combination of flexible silicone membranes and solid components made of stainless steel. Alternatively, the solid components can also be made of 3D printed medical-grade polycarbonate. The FUGU is designed to support micro-extrusion needle insertion and removal, internal volume adjustment, and fluid management. The FUGU was assessed in various environments, ranging from custom-built basic cartesian to sophisticated 6-axis robotic arm bioprinters, demonstrating its compatibility, flexibility, and universality across different bioprinting platforms. Sterility assays conducted under various infection scenarios highlight the FUGU's ability to physically protect the internal volume against contaminations, thereby ensuring the integrity of the bioprinted constructs. The FUGU also enabled bioprinting and cultivation of a 14.5 cm3 human colorectal cancer tissue model within a completely confined and sterile environment, while allowing for the exchange of gases with the external environment. This FUGU system represents a significant advancement in 3D bioprinting and biofabrication, paving the path toward the sterile production of implantable tissues and organs.


Asunto(s)
Bioimpresión , Reactores Biológicos , Impresión Tridimensional , Bioimpresión/métodos , Humanos , Ingeniería de Tejidos/métodos , Esterilización , Andamios del Tejido
4.
Pharmaceutics ; 15(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38140081

RESUMEN

Nanomedicines engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or a short half-life, are targeted towards their cellular destination either passively or through various elements of cell membranes. The differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, but they are not systematically used for drug delivery purposes. Thus, in this study, a new approach based on a match between the liposome compositions, i.e., membrane fluidity, to selectively interact with the targeted cell membrane was used. Lipid-based carriers of two different fluidities were designed and used to deliver 4(RS)-4-F4t-Neuroprostane (F4t-NeuroP), a potential antitumor molecule derived from docosahexaenoic acid (DHA). Based on its hydrophobic character, F4t-NeuroP was added to the lipid mixture prior to liposome formation, a protocol that yielded over 80% encapsulation efficiency in both rigid and fluid liposomes. The presence of the active molecule did not modify the liposome size but increased the liposome negative charge and the liposome membrane fluidity, which suggested that the active molecule was accommodated in the lipid membrane. F4t-NeuroP integration in liposomes with a fluid character allowed for the selective targeting of the metastatic prostate cell line PC-3 vs. fibroblast controls. A significant decrease in viability (40%) was observed for the PC-3 cancer line in the presence of F4t-NeuroP fluid liposomes, whereas rigid F4t-NeuroP liposomes did not alter the PC-3 cell viability. These findings demonstrate that liposomes encapsulating F4t-NeuroP or other related molecules may be an interesting model of drug carriers based on membrane fluidity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA