Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(2-2): 025210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491702

RESUMEN

Sandberg and Thomas [Phys. Rev. Lett. 130, 085001 (2023)0031-900710.1103/PhysRevLett.130.085001] proposed a scheme to generate ultrashort, high-energy pulses of XUV photons though dephasingless photon acceleration in a beam-driven plasma wakefield. An ultrashort laser pulse is placed in the plasma wake behind a relativistic electron bunch such that it experiences a comoving negative density gradient and therefore shifts up in frequency. Using a tapered density profile provides phase-matching between driver and witness pulses. In this paper, we give the details of the wakefield solutions and phase-matching conditions used to generate the phase-matching density profile. The short, high-density, and weak driver limits are considered. We show, explicitly, the numerical algorithm used to calculate the density profiles.

2.
Sci Rep ; 14(1): 6001, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472232

RESUMEN

The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing N e + ≥ 10 5 positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.

3.
Phys Rev Lett ; 130(10): 105002, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36962018

RESUMEN

The generation of low emittance electron beams from laser-driven wakefields is crucial for the development of compact x-ray sources. Here, we show new results for the injection and acceleration of quasimonoenergetic electron beams in low amplitude wakefields experimentally and using simulations. This is achieved by using two laser pulses decoupling the wakefield generation from the electron trapping via ionization injection. The injection duration, which affects the beam charge and energy spread, is found to be tunable by adjusting the relative pulse delay. By changing the polarization of the injector pulse, reducing the ionization volume, the electron spectra of the accelerated electron bunches are improved.

4.
Phys Rev Lett ; 130(8): 085001, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898096

RESUMEN

The propagating density gradients of a plasma wakefield may frequency upshift a trailing witness laser pulse, a process known as "photon acceleration." In uniform plasma, the witness laser will eventually dephase because of group delay. We find phase-matching conditions for the pulse using a tailored density profile. An analytic solution for a 1D nonlinear plasma wake with an electron beam driver indicates that, even though the plasma density decreases, the frequency shift reaches no asymptotic limit, i.e., is unlimited provided the wake can be sustained. In fully self-consistent 1D particle-in-cell (PIC) simulations, more than 40 times frequency shifts were demonstrated. In quasi-3D PIC simulations, frequency shifts up to 10 times were observed, limited only by simulation resolution and nonoptimized driver evolution. The pulse energy increases in this process, by a factor of 5, and the pulse is guided and temporally compressed by group velocity dispersion, resulting in the resulting extreme ultraviolet laser pulse having near-relativistic (a_{0}∼0.4) intensity.

5.
Appl Radiat Isot ; 176: 109853, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34298462

RESUMEN

The advances of laser-driven electron acceleration offer the promise of great reductions in the size of high-energy electron accelerator facilities. Accordingly, it is desirable to design compact radiation shielding for such facilities. A key component of radiation shielding is the high-energy electron beam dump. In an effort to optimize the electron beam dump design, different material combinations have been simulated with the FLUKA Monte Carlo code in the range of 1-40 GeV. The studied beam dump configurations consist of alternating layers of high-Z material (lead or iron) and low-Z material (high-density concrete or borated polyethylene) in either three-layer or five-layer structures. The designs of various beam dump configuration have been compared and it has been found that the iron and concrete stacking in a three-layer structure with a thick iron layer results in the lowest dose at 1, 10, and 40 GeV. The performance of the beam dump exhibits a strong dependence on the selected materials, the stacking method, the beam dump thickness, as well as the electron energy. This parametric study provides general insights that can be used for compact shielding design of future electron accelerator facilities.

6.
Nat Commun ; 12(1): 334, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436570

RESUMEN

Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high-ß plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes.

7.
Nat Commun ; 11(1): 6355, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311487

RESUMEN

Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.

8.
Phys Rev Lett ; 125(14): 145001, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064539

RESUMEN

In experiments performed with the OMEGA EP laser system, magnetic field generation in double ablation fronts was observed. Proton radiography measured the strength, spatial profile, and temporal dynamics of self-generated magnetic fields as the target material was varied between plastic, aluminum, copper, and gold. Two distinct regions of magnetic field are generated in mid-Z targets-one produced by gradients from electron thermal transport and the second from radiation-driven gradients. Extended magnetohydrodynamic simulations including radiation transport reproduced key aspects of the experiment, including field generation and double ablation front formation.

10.
Phys Rev Lett ; 124(11): 114801, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242688

RESUMEN

We report on the experimental observation of a decreased self-injection threshold by using laser pulses with circular polarization in laser wakefield acceleration experiments in a nonpreformed plasma, compared to the usually employed linear polarization. A significantly higher electron beam charge was also observed for circular polarization compared to linear polarization over a wide range of parameters. Theoretical analysis and quasi-3D particle-in-cell simulations reveal that the self-injection and hence the laser wakefield acceleration is polarization dependent and indicate a different injection mechanism for circularly polarized laser pulses, originating from larger momentum gain by electrons during above threshold ionization. This enables electrons to meet the trapping condition more easily, and the resulting higher plasma temperature was confirmed via spectroscopy of the XUV plasma emission.

12.
Opt Express ; 27(8): 10912-10923, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052944

RESUMEN

There has been growing interest both in studying high intensity ultrafast laser plasma interactions with adaptive control systems as well as using long wavelength driver beams. We demonstrate the coherent control of the dynamics of laser-wakefield acceleration driven by ultrashort (∼ 100 fs) mid-infrared (∼ 3.9 µm) laser pulses. The critical density at this wavelength is 7.3 × 1019 cm-3, which is achievable with an ordinary gas target system. Interactions between mid-infrared laser pulses and such near-critical-density plasma may be beneficial due to much higher absorption of laser energy. In addition, the normalized vector potential of the laser field a0 increases with longer laser wavelength, lowering the required peak laser intensity to drive non-linear laser-wakefield acceleration. Here, MeV level, collimated electron beams with non-thermal, peaked energy spectra are generated. Optimization of electron beam qualities are realized through adaptive control of the laser wavefront. A genetic algorithm controlling a deformable mirror improves the electron total charge, energy spectra, beam pointing and stability at various plasma density profiles. Particle-in-cell simulations reveal that the optimal wavefront causes an earlier injection on the density up-ramp and thus higher energy gain as well as less filamentation during the interaction, which leads to the improvement in electron beam collimation and energy spectra.

13.
Sci Rep ; 9(1): 3249, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824838

RESUMEN

Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained via X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3 µm of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.

14.
Phys Rev Lett ; 123(25): 254801, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31922780

RESUMEN

Single-shot absorption measurements have been performed using the multi-keV x rays generated by a laser-wakefield accelerator. A 200 TW laser was used to drive a laser-wakefield accelerator in a mode which produced broadband electron beams with a maximum energy above 1 GeV and a broad divergence of ≈15 mrad FWHM. Betatron oscillations of these electrons generated 1.2±0.2×10^{6} photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300∶1. This was sufficient to allow high-resolution x-ray absorption near-edge structure measurements at the K edge of a titanium sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous measurements of both the electron and ion distributions in matter heated to eV temperatures by comparison with density functional theory simulations. The unique combination of a high-flux, large bandwidth, few femtosecond duration x-ray pulse synchronized to a high-power laser will enable key advances in the study of ultrafast energetic processes such as electron-ion equilibration.

15.
Rev Sci Instrum ; 89(11): 113303, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30501337

RESUMEN

We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.

16.
Sci Rep ; 8(1): 11010, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030516

RESUMEN

Betatron radiation from laser wakefield accelerators is an ultrashort pulsed source of hard, synchrotron-like x-ray radiation. It emanates from a centimetre scale plasma accelerator producing GeV level electron beams. In recent years betatron radiation has been developed as a unique source capable of producing high resolution x-ray images in compact geometries. However, until now, the short pulse nature of this radiation has not been exploited. This report details the first experiment to utilize betatron radiation to image a rapidly evolving phenomenon by using it to radiograph a laser driven shock wave in a silicon target. The spatial resolution of the image is comparable to what has been achieved in similar experiments at conventional synchrotron light sources. The intrinsic temporal resolution of betatron radiation is below 100 fs, indicating that significantly faster processes could be probed in future without compromising spatial resolution. Quantitative measurements of the shock velocity and material density were made from the radiographs recorded during shock compression and were consistent with the established shock response of silicon, as determined with traditional velocimetry approaches. This suggests that future compact betatron imaging beamlines could be useful in the imaging and diagnosis of high-energy-density physics experiments.

17.
Opt Express ; 26(5): 6294-6301, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529821

RESUMEN

Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics - spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. The spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage to generate uniform warm dense conditions in a large area.

18.
Phys Rev Lett ; 119(18): 185002, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219555

RESUMEN

We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

19.
Opt Express ; 25(15): 17271-17279, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789220

RESUMEN

We apply active feedback optimization methods to pyroelectric measurements of a THz signal generated by four wave mixing in air using 1 mJ to 12 mJ, 35 fs laser pulses operating at 12 kHz repetition rate. A genetic algorithm, using the THz signal as a figure of merit, determines the voltage settings to a deformable mirror and results in up to a 6 fold improvement in the THz signal compared with settings optimized for the best focus. It is possible to optimize for different THz generation processes using this technique.

20.
Sci Rep ; 7(1): 3985, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28638099

RESUMEN

Particle accelerators have made an enormous impact in all fields of natural sciences, from elementary particle physics, to the imaging of proteins and the development of new pharmaceuticals. Modern light sources have advanced many fields by providing extraordinarily bright, short X-ray pulses. Here we present a novel numerical study, demonstrating that existing third generation light sources can significantly enhance the brightness and photon energy of their X-ray pulses by undulating their beams within plasma wakefields. This study shows that a three order of magnitude increase in X-ray brightness and over an order of magnitude increase in X-ray photon energy is achieved by passing a 3 GeV electron beam through a two-stage plasma insertion device. The production mechanism micro-bunches the electron beam and ensures the pulses are radially polarised on creation. We also demonstrate that the micro-bunched electron beam is itself an effective wakefield driver that can potentially accelerate a witness electron beam up to 6 GeV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...