Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS ES T Water ; 3(9): 2849-2862, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-38487696

RESUMEN

Wastewater-based epidemiology (WBE) has been utilized to track community infections of Coronavirus Disease 2019 (COVID-19) by detecting RNA of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), within samples collected from wastewater. The correlations between community infections and wastewater measurements of the RNA can potentially change as SARS-CoV-2 evolves into new variations by mutating. This study analyzed SARS-CoV-2 RNA, and indicators of human waste in wastewater from two sewersheds of different scales (University of Miami (UM) campus and Miami-Dade County Central District wastewater treatment plant (CDWWTP)) during five internally defined COVID-19 variant dominant periods (Initial, Pre-Delta, Delta, Omicron and Post-Omicron wave). SARS-CoV-2 RNA quantities were compared against COVID-19 clinical cases and hospitalizations to evaluate correlations with wastewater SARS-CoV-2 RNA. Although correlations between documented clinical cases and hospitalizations were high, prevalence for a given wastewater SARS-CoV-2 level varied depending upon the variant analyzed. The correlative relationship was significantly steeper (more cases per level found in wastewater) for the Omicron-dominated period. For hospitalization, the relationships were steepest for the Initial wave, followed by the Delta wave with flatter slopes during all other waves. Overall results were interpreted in the context of SARS-CoV-2 virulence and vaccination rates among the community.

2.
ACS ES T Water ; 2(11): 1992-2003, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36398131

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater has been used to track community infections of coronavirus disease-2019 (COVID-19), providing critical information for public health interventions. Since levels in wastewater are dependent upon human inputs, we hypothesize that tracking infections can be improved by normalizing wastewater concentrations against indicators of human waste [Pepper Mild Mottle Virus (PMMoV), ß-2 Microglobulin (B2M), and fecal coliform]. In this study, we analyzed SARS-CoV-2 and indicators of human waste in wastewater from two sewersheds of different scales: a University campus and a wastewater treatment plant. Wastewater data were combined with complementary COVID-19 case tracking to evaluate the efficiency of wastewater surveillance for forecasting new COVID-19 cases and, for the larger scale, hospitalizations. Results show that the normalization of SARS-CoV-2 levels by PMMoV and B2M resulted in improved correlations with COVID-19 cases for campus data using volcano second generation (V2G)-qPCR chemistry (r s = 0.69 without normalization, r s = 0.73 with normalization). Mixed results were obtained for normalization by PMMoV for samples collected at the community scale. Overall benefits from normalizing with measures of human waste depend upon qPCR chemistry and improves with smaller sewershed scale. We recommend further studies that evaluate the efficacy of additional normalization targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...