Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Pain ; 165(5): 1033-1043, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38112575

RESUMEN

ABSTRACT: Significant progress has been made in linking measures of individual alpha frequency (IAF) and pain. A lower IAF has been associated with chronic neuropathic pain and with an increased sensitivity to pain in healthy young adults. However, the translation of these findings to chronic low back pain (cLBP) are sparse and inconsistent. To address this limitation, we assessed IAFs in a cohort of 70 individuals with cLBP, implemented 3 different IAF calculations, and separated cLBP subjects based on psychological variables. We hypothesized that a higher fear movement in cLBP is associated with a lower IAF at rest. A total of 10 minutes of resting data were collected from 128 electroencephalography channels. Our results offer 3 novel contributions to the literature. First, the high fear group had a significantly lower peak alpha frequency. The high fear group also reported higher pain and higher disability. Second, we calculated individual alpha frequency using 3 different but established methods; the effect of fear on individual alpha frequency was robust across all methods. Third, fear of movement, pain intensity, and disability highly correlated with each other and together significantly predicted IAF. Our findings are the first to show that individuals with cLBP and high fear have a lower peak alpha frequency.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Trastornos Fóbicos , Adulto Joven , Humanos , Dolor de la Región Lumbar/psicología , Kinesiofobia , Miedo/psicología , Movimiento , Trastornos Fóbicos/psicología , Evaluación de la Discapacidad
2.
Front Neurol ; 14: 1241545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780699

RESUMEN

Introduction: Among patients with traumatic brain injury (TBI), balance problems often persist alongside hearing and vision impairments that lead to poorer outcomes of functional independence. As such, the ability to regain premorbid independent gait may be dictated by the level of sensory acuity or processing decrements that are shown following TBI assessment. This study explores the relationships between standardized sensory acuity and processing outcomes to postural balance and gait speed. Methods: Secondary analysis was performed on the Long-Term Impact of Military- Relevant Brain Injury Consortium Chronic Effects of Neurotrauma Consortium LIMBIC (CENC) data set. Separate regression analyses were carried out for each of the balance assessments (via Computerized Dynamic Posturography, CDP) and walking speed. Discussion: TBI frequency was significantly related to the majority of single CDP outcomes (i.e., Conditions 2-6), while various sensory processing outcomes had task-specific influences. Hearing impairments and auditory processing decrements presented with lower CDP scores (CDP Conditions 3,5,6, and 1-3 respectively), whereas greater visual processing scores were associated with better CDP scores for Conditions 2,5, and 6. In sum, patients with TBI had similar scores on static balance tests compared to non-TBI, but when the balance task got more difficult patients with TBI scored worse on the balance tests. Additionally, stronger associations with sensory processing than sensory acuity measures may indicate that patients with TBI have increased fall risk.

3.
Sci Rep ; 12(1): 15604, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114252

RESUMEN

Our current understanding of response inhibition comes from go/no-go studies that draw conclusions based on the overt movement of single limbs (i.e., a single finger pushing a button). In general, go/no-go paradigms have found that an individual's ability to correctly inhibit the motor system is indicative of a healthy central nervous system. However, measuring inhibition by an overt behavioral response may lack the sensitivity to conclude whether the motor system is completely inhibited. Therefore, our goal was to use behavioral and neurophysiological measures to investigate inhibition of the motor system during a full-body reaching task. When directly comparing neurophysiological and behavioral measures, we found that neurophysiological measures were associated with a greater number of errors during no-go trials and faster onset times during go trials. Further analyses revealed a negative correlation between errors and onset times, such that the muscles that activated the earliest during go trials also had the greatest number of errors during no-go trials. Together, our observations show that the absence of an overt behavioral response does not always translate to total inhibition of the motor system.


Asunto(s)
Inhibición Psicológica , Movimiento , Dedos , Movimiento/fisiología , Neurofisiología
4.
Front Sports Act Living ; 4: 824990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498518

RESUMEN

The vestibular ocular reflex (VOR) provides gaze stability during head movements by driving eye movements in a direction opposing head motion. Although vestibular-based rehabilitation strategies are available, it is still unclear whether VOR can be modulated by training. By examining adaptations in gaze stabilization mechanisms in a population with distinct visuomotor requirements for task success (i.e., gymnasts), this study was designed to determine whether experience level (as a proxy of training potential) was associated with gaze stabilization modifications during fixed target (VOR promoting) and fixed-to-head-movement target (VOR suppressing) tasks. Thirteen gymnasts of different skill levels participated in VOR and VOR suppression tasks. The gain between head and eye movements was calculated and compared between skill levels using an analysis of covariance. Across experience levels, there was a similar degradation in VOR gain away from -1 at higher movement speeds. However, during the suppression tasks, more experienced participants were able to maintain VOR gain closer to 0 across movement speeds, whereas novice participants showed greater variability in task execution regardless of movement speed. Changes in adaptive modifications to gaze stability associated with experience level suggest that the mechanisms impacting gaze stabilization can be manipulated through training.

5.
JMIR Serious Games ; 10(1): e32027, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35319471

RESUMEN

BACKGROUND: Complex movement pathologies that are biopsychosocial in nature (eg, back pain) require a multidimensional approach for effective treatment. Virtual reality is a promising tool for rehabilitation, where therapeutic interventions can be gamified to promote and train specific movement behaviors while increasing enjoyment, engagement, and retention. We have previously created virtual reality-based tools to assess and promote lumbar excursion during reaching and functional gameplay tasks by manipulating the position of static and dynamic contact targets. Based on the framework of graded exposure rehabilitation, we have created a new virtual reality therapy aimed to alter movement speed while retaining the movement-promoting features of our other developments. OBJECTIVE: This study aims to compare lumbar flexion excursion and velocity across our previous and newly developed virtual reality tools in a healthy control cohort. METHODS: A total of 31 healthy participants (16 males, 15 females) took part in 3 gamified virtual reality therapies (ie, Reachality, Fishality, and Dodgeality), while whole-body 3D kinematics were collected at 100 Hz using a 14-camera motion capture system. Lumbar excursion, lumbar flexion velocity, and actual target impact location in the anterior and vertical direction were compared across each virtual reality task and between the 4 anthropometrically defined intended target impact locations using separate 2-way repeated measures analysis of variance models. RESULTS: There was an interaction between game and impact height for each outcome (all P<.001). Post-hoc simple effects models revealed that lumbar excursion was reduced during Reachality and Fishality relative to that during Dodgeality for the 2 higher impact heights but was greater during Reachality than during Fishality and Dodgeality for the lowest impact height. Peak lumbar flexion velocity was greater during Dodgeality than during Fishality and Reachality across heights. Actual target impact locations during Dodgeality and Fishality were lower relative to those during Reachality at higher intended impact locations but higher at lower intended impact locations. Finally, actual target impact location was further in the anterior direction for Reachality compared to that for Fishality and for Fishality relative to that for Dodgeality. CONCLUSIONS: Lumbar flexion velocity was reduced during Fishality relative to that during Dodgeality and resembled velocity demands more similar to those for a self-paced reaching task (ie, Reachality). Additionally, lumbar motion and target impact location during Fishality were more similar to those during Reachality than to those during Dodgeality, which suggests that this new virtual reality game is an effective tool for shaping movement. These findings are encouraging for future research aimed at developing an individualized and graded virtual reality intervention for patients with low back pain and a high fear of movement.

6.
Gait Posture ; 91: 30-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634613

RESUMEN

BACKGROUND: Identifying altered motor control patterns during functional movements in patients with chronic non-specific low back pain (LBP) has important clinical implications for reducing the risk of recurrence. While prior research has shown that magnitudes of lumbar and hip motion are not altered in patients with chronic non-specific LBP, it is possible that outcomes which describe coordination could provide greater discriminatory information between pathological and healthy movement. RESEARCH QUESTION: Determine the effect of biological sex and chronic non-specific LBP on coordination between hip and lumbar motion during cyclic and discrete reaching. METHODS: Twenty participants with chronic non-specific LBP (11 male/9 female, 23.5 ± 4.9 years old) and 21 control participants (12 male/9 female, 22.9 ± 6.1 years old) completed discrete and cyclic reaching tasks to a target in the mid-sagittal plane, while whole-body kinematics were collected using a three-dimensional motion capture system. Movement time, lumbar motion, hip motion, and the ratio between lumbar and hip motion were compared between participants with and without chronic non-specific LBP and between men and women using two-way mixed ANOVAs. RESULTS: Participants with chronic non-specific LBP had reduced lumbar-hip ratios relative to control participants during both the cyclic (F = 4.779, p = 0.035, η2 = 0.114) and discrete tasks (F = 4.743, p = 0.036, η2 = 0.119), however group differences were not observed for hip or lumbar excursion during either task (p > 0.05). Participants with chronic non-specific LBP had slower reaching times relative to controls during the discrete reaching task (F = 4.795, p = 0.035, η2 = 0.115). No significant effects of sex, and no interactions between group and sex were observed for any outcome. SIGNIFICANCE: Reduced lumbar-hip ratios during reaching likely reflect a compensatory movement strategy that could play an important role in the development and progression of LBP.


Asunto(s)
Dolor de la Región Lumbar , Adolescente , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Vértebras Lumbares , Región Lumbosacra , Masculino , Movimiento , Rango del Movimiento Articular , Adulto Joven
7.
Ergonomics ; 65(6): 842-856, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34694212

RESUMEN

This study aimed to examine the effects of head movement restriction on relative angles and their derivatives using the stepwise segmentation approach during lifting and lowering tasks. Ten healthy men lifted and lowered a box using two styles (stoop and squat), with two loads (i.e. 10% and 20% of body weight); they performed these tasks with two instructed head postures [(1) Flexing the neck to keep contact between chin and chest over the task cycle; (2) No instruction, free head posture]. The neck flexion significantly affected the flexion angle of all segments of the spine and specifically the lumbar part. Additionally, this posture significantly affected the derivatives of the relative angles and manifested latency in spine segments movement, that is, cephalad-to-caudad or caudad-to-cephalad patterns. Conclusively, neck flexion as an awkward posture could increase the risk of low back pain during lifting and lowering tasks in occupational environments. Practitioner summary: Little information is available about the effects of neck flexion on other spine segments' kinematics and movement patterns, specifically about the lumbar spine. The result of this experimental study shows that neck flexion can increase the risk of low back pain by increasing lumbar flexion angle and spine awkward posture.


Asunto(s)
Elevación , Dolor de la Región Lumbar , Fenómenos Biomecánicos , Movimientos de la Cabeza , Humanos , Vértebras Lumbares , Masculino , Movimiento
8.
Front Neurol ; 13: 906661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712459

RESUMEN

Introduction: Among patients with traumatic brain injury (TBI), postural instability often persists chronically with negative consequences such as higher fall risk. One explanation may be reduced executive function (EF) required to effectively process, interpret and combine, sensory information. In other populations, a decline in higher cognitive functions are associated with a decline in walking and balance skills. Considering the link between EF decline and reduction in functional capacity, we investigated whether specific tests of executive function could predict balance function in a cohort of individuals with a history of chronic mild TBI (mTBI) and compared to individuals with a negative history of mTBI. Methods: Secondary analysis was performed on the local LIMBIC-CENC cohort (N = 338, 259 mTBI, mean 45 ± STD 10 age). Static balance was assessed with the sensory organization test (SOT). Hierarchical regression was used for each EF test outcome using the following blocks: (1) the number of TBIs sustained, age, and sex; (2) the separate Trail making test (TMT); (3) anti-saccade eye tracking items (error, latency, and accuracy); (4) Oddball distractor stimulus P300 and N200 at PZ and FZ response; and (5) Oddball target stimulus P300 and N200 at PZ and FZ response. Results: The full model with all predictors accounted for between 15.2% and 21.5% of the variability in the balance measures. The number of TBI's) showed a negative association with the SOT2 score (p = 0.002). Additionally, longer times to complete TMT part B were shown to be related to a worse SOT1 score (p = 0.038). EEG distractors had the most influence on the SOT3 score (p = 0.019). Lastly, the SOT-composite and SOT5 scores were shown to be associated with longer inhibition latencies and errors (anti-saccade latency and error, p = 0.026 and p = 0.043 respectively). Conclusions: These findings show that integration and re-weighting of sensory input when vision is occluded or corrupted is most related to EF. This indicates that combat-exposed Veterans and Service Members have greater problems when they need to differentiate between cues when vision is not a reliable input. In sum, these findings suggest that EF could be important for interpreting sensory information to identify balance challenges in chronic mTBI.

9.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884036

RESUMEN

Fall rates are increasing among the aging population and even higher falls rates have been reported in populations with neurological impairments. The Berg Balance Scale is often used to assess balance in older adults and has been validated for use in people with stroke, traumatic brain injury, and Parkinson's disease. While the Berg Balance Scale (BBS) has been found to be predictive of the length of rehabilitation stay following stroke, a recent review concluded the BBS lacked predictive validity for fall risk. Conversely, sophisticated measures assessing center of mass (COM) displacement have shown to be predictive of falls risk. However, calculating COM displacement is difficult to measure outside a laboratory. Accordingly, we sought to validate COM displacement measurements derived from an HTC Vive tracker secured to the pelvis by comparing it to COM derived from 'gold' standard laboratory-based full-body motion capture. Results showed that RMS between the COM calculated from HTC Vive tracker and full body motion capture agree with an average error rate of 2.1 ± 2.6 cm. Therefore, we conclude measurement of COM displacement using an HTC Vive tracker placed on the pelvis is reasonably representative of laboratory-based measurement of COM displacement.


Asunto(s)
Accidentes por Caídas , Enfermedad de Parkinson , Anciano , Humanos , Movimiento (Física) , Pelvis , Proyectos Piloto , Equilibrio Postural
11.
Sci Rep ; 11(1): 7592, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828171

RESUMEN

Chronic low back pain (cLBP) rates among younger individuals are rising. Although pain and disability are often less severe, underlying changes in trunk behavior may be responsible for recurrence. We examine the biomarker capacity of a simple Trunk Compliance Index (TCI) to distinguish individuals with and without cLBP. A random subset (n = 49) of the RELIEF RCT were matched to healthy controls for sex, age, height and weight. We measured TCI (as displacement/ weight-normalized perturbation force) using anthropometrically-matched, suddenly-applied pulling perturbations to the trunk segment, randomized across three planes of motion (antero-posterior, medio-lateral, and rotational). Mean differences between cLBP, sex and perturbation direction were assessed with repeated-measures analysis of variance. Discriminatory accuracy of TCI was assessed using Receiver Operator Characteristic (ROC) analysis. Baseline characteristics between groups were equivalent (x̅ [range]): sex (57% female / group), age (23.0 [18-45], 22.8 [18-45]), height, cm (173.0 [156.5-205], 171.3 [121.2-197], weight, kg (71.8 [44.5-116.6], 71.7 [46.8-117.5]) with cLBP associated with significantly lower TCI for 5 of 6 directions (range mean difference, - 5.35: - 1.49, range 95% CI [- 6.46: - 2.18 to - 4.35: - 0.30]. Classification via ROC showed that composite TCI had high discriminatory potential (area under curve [95% CI], 0.90 [0.84-0.96]), driven by TCI from antero-posterior perturbations (area under curve [95% CI], 0.99 [0.97-1.00]). Consistent reductions in TCI suggests global changes in trunk mechanics that may go undetected in classic clinical examination. Evaluation of TCI in younger adults with mild pain and disability may serve as a biomarker for chronicity, leading to improved preventative measures in cLBP.Trial Registration and Funding RELIEF is registered with clinicaltrials.gov (NCT01854892) and funded by the NIH National Center for Complementary & Integrative Health (R01AT006978).


Asunto(s)
Dolor de la Región Lumbar/clasificación , Dolor de la Región Lumbar/diagnóstico , Torso/fisiología , Adulto , Antropometría/métodos , Biomarcadores , Dolor Crónico/clasificación , Dolor Crónico/diagnóstico , Evaluación de la Discapacidad , Personas con Discapacidad/clasificación , Femenino , Humanos , Masculino , Dimensión del Dolor , Adulto Joven
12.
J Back Musculoskelet Rehabil ; 34(1): 139-147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33136088

RESUMEN

BACKGROUND: Sorensen Test time-to-task-failure (TTF) predicts several low back pain (LBP) clinical outcomes, including recurrence. Because the test is described as a measure of trunk extensor (TE) muscle endurance, LBP rehabilitation programs often emphasize endurance training, but the direct role of TE muscle function on Sorensen Test-TTF remains unclear. OBJECTIVE: To assess the discriminative and associative properties of multiple markers of isolated TE performance with regard to Sorensen Test-TTF in individuals with recurrent LBP. METHOD: Secondary analysis of baseline measures from participants in a registered (NCT02308189) trial (10 men; 20 women) was performed. Participants were classified by Sorensen Test-TTF as high, moderate or low risk for subsequent LBP episodes, and compared to determine if classification could discriminate differences in TE function. Correlations between Sorensen Test-TTF and isolated TE performance, anthropometrics and disability were investigated. RESULTS: Individuals at risk of subsequent LBP episodes had greater perceived disability and fat mass/TE strength ratios (P⩽ 0.05) than those not at risk. Modest, significant (r= 0.36-0.42, P⩽ 0.05) associations were found between Sorensen Test-TTF, TE endurance and fat mass/TE strength. Exploratory analyses suggested possible sex-specific differences related to Sorensen Test-TTF. CONCLUSIONS: Isolated TE muscle endurance is only one of several factors with similar influence on Sorensen Test-TFF, thus LBP rehabilitation strategies should consider other factors, including TE strength, anthropometrics and perceived disability.


Asunto(s)
Contracción Isométrica/fisiología , Dolor de la Región Lumbar/fisiopatología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Resistencia Física/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fatiga Muscular/fisiología , Recurrencia Local de Neoplasia/fisiopatología , Torso/fisiopatología , Adulto Joven
13.
J Physiol ; 599(1): 289-305, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067807

RESUMEN

KEY POINTS: Cortical activity underlying movement-evoked pain is not well understood, despite being a key symptom of chronic musculoskeletal pain. We combined high-density electroencephalography with a full-body reaching protocol in a virtual reality environment to assess cortical activity during movement-evoked pain in chronic low back pain. Movement-evoked pain in individuals with chronic low back pain was associated with longer reaction times, delayed peak velocity and greater movement variability. Movement-evoked pain was associated with attenuated disinhibition in prefrontal motor areas, as evidenced by an attenuated reduction in beta power in the premotor cortex and supplementary motor area. ABSTRACT: Although experimental pain alters neural activity in the cortex, evidence of changes in neural activity in individuals with chronic low back pain (cLBP) remains scarce and results are inconsistent. One of the challenges in studying cLBP is that the clinical pain fluctuates over time and often changes during movement. The goal of the present study was to address this challenge by recording high-density electroencephalography (HD-EEG) data during a full-body reaching task to understand neural activity during movement-evoked pain. HD-EEG data were analysed using independent component analyses, source localization and measure projection analyses to compare neural oscillations between individuals with cLBP who experienced movement-evoked pain and pain-free controls. We report two novel findings. First, movement-evoked pain in individuals with cLBP was associated with longer reaction times, delayed peak velocity and greater movement variability. Second, movement-evoked pain was associated with an attenuated reduction in beta power in the premotor cortex and supplementary motor area. Our observations move the field forward by revealing attenuated disinhibition in prefrontal motor areas during movement-evoked pain in cLBP.


Asunto(s)
Dolor de la Región Lumbar , Corteza Motora , Electroencefalografía , Humanos , Movimiento , Percepción del Dolor
14.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 3074-3082, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33232238

RESUMEN

Virtual reality (VR) can be used to create environments that are not possible in the real-world. Producing movements in VR holds enormous promise for rehabilitation and offers a platform from which to understand the neural control of movement. However, no study has examined the impact of a 3D fully immersive head-mounted display (HMD) VR system on the integrity of neural data. We assessed the quality of 64-channel EEG data with and without HMD VR during rest and during a full-body reaching task. We compared resting EEG while subjects completed three conditions: No HMD (EEG-only), HMD powered off (VR-off), and HMD powered on (VR-on). Within the same session, EEG were collected while subjects completed full-body reaching movements in two conditions (EEG-only, VR-on). During rest, no significant differences in data quality and power spectrum were observed between EEG-only, VR-off, and VR-on conditions. During reaching movements, the proportion of components attributed to the brain was greater in the EEG-only condition compared to the VR-on condition. Despite this difference, neural oscillations in source space were not significantly different between conditions, with both conditions associated with decreases in alpha and beta power in sensorimotor cortex during movements. Our findings demonstrate that the integrity of EEG data can be maintained while individuals execute full-body reaching movements within an immersive 3D VR environment. Clinical impact: Integrating VR and EEG is a viable approach to understanding the cortical processes of movement. Simultaneously recording movement and brain activity in combination with VR provides the foundation for neurobiologically informed rehabilitation therapies.


Asunto(s)
Realidad Virtual , Electroencefalografía , Humanos , Movimiento , Modalidades de Fisioterapia , Interfaz Usuario-Computador
15.
Plant Dis ; : PDIS03200547RE, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900292

RESUMEN

Late and early leaf spot are caused by Nothopassalora personata and Passalora arachidicola, respectively, and are damaging diseases of peanut (Arachis hypogaea L.) capable of defoliation and yield loss. Management of these diseases is most effective through the integration of tactics that reduce starting inoculum and prevent infection. The insecticide phorate was first registered in 1959 and has been used in peanut production for decades in-furrow at planting to suppress thrips. Phorate further provides significant suppression of Tomato spotted wilt virus infection beyond suppression of its thrips vector alone by activating defense-related responses in the peanut plant. From six experiments conducted from 2017 to 2019 in Blackville, SC, Reddick, FL, and Quincy, FL, significantly less leaf spot defoliation was exhibited on peanuts treated with phorate in-furrow at planting (26%) compared with nontreated checks (48%). In-season fungicides were excluded from five of the experiments, whereas the 2018 Quincy, FL, experiment included eight applications on a 15-day interval. Across individual experiments, significant suppression of defoliation caused by late leaf spot was observed from 64 to 147 days after planting. Although more variable within location-years, pod yield following phorate treatment was overall significantly greater than for nontreated peanut (2,330 compared with 2,030 kg/ha; P = 0.0794). The consistent defoliation suppression potential was estimated to confer an average potential net economic yield savings of $90 to $120 per hectare under analogous leaf spot defoliation. To our knowledge, these are the first data in the 61 years since its registration demonstrating significant suppression of leaf spot on peanut following application of phorate in-furrow at planting. Results support phorate use in peanut as an effective and economical tactic to incorporate to manage late and early leaf spot infections and development of fungicide resistance.

16.
Front Aging Neurosci ; 12: 241, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848714

RESUMEN

Fear of falling influences postural strategies used for balance, and is key in the maintenance of independent living and quality of life as adults age. However, there is a distinct need for methodology that aims to specifically address and prime fear under dynamic conditions, and to better determine the role of fear in movement preparation. This preliminary study investigated how fear priming influences fear of falling in young and older individuals, and assessed how changes in fear of falling map to movement behavior. Young (21.5 ± 1.7 years, n = 10) and older (58.1 ± 2.2 years) participants matched for height, weight, and sex were repeatedly exposed to four different and incrementally challenging laboratory-based slipping perturbations during a self-initiated, goal-directed step and reach task. Both younger and older cohorts showed similar heightened perceptions in fear of falling after fear priming, and changes in peak joint excursions including reduced ankle flexion, and increased lumbar flexion after fear priming. Age-related changes were only evident in total mediolateral center of mass displacement, with younger participants showing greater displacement after fear priming. Despite clear differences in preparatory muscle onsets relative to reach onset seen in older participants, muscle timings or co-contraction indices were not significantly different. Methods utilizing repeated exposure to varying increases of a slip-based postural challenge can successfully prime fear of falling in individuals, regardless of age.

17.
JMIR Serious Games ; 8(3): e18888, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32812885

RESUMEN

BACKGROUND: Visual representation of oneself is likely to affect movement patterns. Prior work in virtual dodgeball showed greater excursion of the ankles, knees, hips, spine, and shoulder occurs when presented in the first-person perspective compared to the third-person perspective. However, the mode of presentation differed between the two conditions such that a head-mounted display was used to present the avatar in the first-person perspective, but a 3D television (3DTV) display was used to present the avatar in the third-person. Thus, it is unknown whether changes in joint excursions are driven by the visual display (head-mounted display versus 3DTV) or avatar perspective during virtual gameplay. OBJECTIVE: This study aimed to determine the influence of avatar perspective on joint excursion in healthy individuals playing virtual dodgeball using a head-mounted display. METHODS: Participants (n=29, 15 male, 14 female) performed full-body movements to intercept launched virtual targets presented in a game of virtual dodgeball using a head-mounted display. Two avatar perspectives were compared during each session of gameplay. A first-person perspective was created by placing the center of the displayed content at the bridge of the participant's nose, while a third-person perspective was created by placing the camera view at the participant's eye level but set 1 m behind the participant avatar. During gameplay, virtual dodgeballs were launched at a consistent velocity of 30 m/s to one of nine locations determined by a combination of three different intended impact heights and three different directions (left, center, or right) based on subject anthropometrics. Joint kinematics and angular excursions of the ankles, knees, hips, lumbar spine, elbows, and shoulders were assessed. RESULTS: The change in joint excursions from initial posture to the interception of the virtual dodgeball were averaged across trials. Separate repeated-measures ANOVAs revealed greater excursions of the ankle (P=.010), knee (P=.001), hip (P=.0014), spine (P=.001), and shoulder (P=.001) joints while playing virtual dodgeball in the first versus third-person perspective. Aligning with the expectations, there was a significant effect of impact height on joint excursions. CONCLUSIONS: As clinicians develop treatment strategies in virtual reality to shape motion in orthopedic populations, it is important to be aware that changes in avatar perspective can significantly influence motor behavior. These data are important for the development of virtual reality assessment and treatment tools that are becoming increasingly practical for home and clinic-based rehabilitation.

19.
JAMA Netw Open ; 3(8): e2012589, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756930

RESUMEN

Importance: Low back pain (LBP) is one of the most common reasons for seeking medical care. Manual therapy is a common treatment of LBP, yet few studies have directly compared the effectiveness of thrust (spinal manipulation) vs nonthrust (spinal mobilization) techniques. Objective: To evaluate the comparative effectiveness of spinal manipulation and spinal mobilization at reducing pain and disability compared with a placebo control group (sham cold laser) in a cohort of young adults with chronic LBP. Design, Setting, and Participants: This single-blinded (investigator-blinded), placebo-controlled randomized clinical trial with 3 treatment groups was conducted at the Ohio Musculoskeletal and Neurological Institute at Ohio University from June 1, 2013, to August 31, 2017. Of 4903 adult patients assessed for eligibility, 4741 did not meet inclusion criteria, and 162 patients with chronic LBP qualified for randomization to 1 of 3 treatment groups. Recruitment began on June 1, 2013, and the primary completion date was August 31, 2017. Data were analyzed from September 1, 2017, to January 20, 2020. Interventions: Participants received 6 treatment sessions of (1) spinal manipulation, (2) spinal mobilization, or (3) sham cold laser therapy (placebo) during a 3-week period. Main Outcomes and Measures: Coprimary outcome measures were the change from baseline in Numerical Pain Rating Scale (NPRS) score over the last 7 days and the change in disability assessed with the Roland-Morris Disability Questionnaire (scores range from 0 to 24, with higher scores indicating greater disability) 48 to 72 hours after completion of the 6 treatments. Results: A total of 162 participants (mean [SD] age, 25.0 [6.2] years; 92 women [57%]) with chronic LBP (mean [SD] NPRS score, 4.3 [2.6] on a 1-10 scale, with higher scores indicating greater pain) were randomized. Fifty-four participants were randomized to the spinal manipulation group, 54 to the spinal mobilization group, and 54 to the placebo group. There were no significant group differences for sex, age, body mass index, duration of LBP symptoms, depression, fear avoidance, current pain, average pain over the last 7 days, and self-reported disability. At the primary end point, there was no significant difference in change in pain scores between spinal manipulation and spinal mobilization (0.24 [95% CI, -0.38 to 0.86]; P = .45), spinal manipulation and placebo (-0.03 [95% CI, -0.65 to 0.59]; P = .92), or spinal mobilization and placebo (-0.26 [95% CI, -0.38 to 0.85]; P = .39). There was no significant difference in change in self-reported disability scores between spinal manipulation and spinal mobilization (-1.00 [95% CI, -2.27 to 0.36]; P = .14), spinal manipulation and placebo (-0.07 [95% CI, -1.43 to 1.29]; P = .92) or spinal mobilization and placebo (0.93 [95% CI, -0.41 to 2.29]; P = .17). Conclusions and Relevance: In this randomized clinical trial, neither spinal manipulation nor spinal mobilization appeared to be effective treatments for mild to moderate chronic LBP. Trial Registration: ClinicalTrials.gov Identifier: NCT01854892.


Asunto(s)
Dolor de la Región Lumbar/terapia , Manipulación Espinal/métodos , Adulto , Femenino , Humanos , Dolor de la Región Lumbar/fisiopatología , Masculino , Resultado del Tratamiento , Adulto Joven
20.
Plant Dis ; 104(5): 1390-1399, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32223639

RESUMEN

Late and early leaf spot, respectively caused by Nothopassalora personata and Passalora arachidicola, are damaging diseases of peanut (Arachis hypogaea) capable of defoliating canopies and reducing yield. Although one of these diseases may be more predominant in a given area, both are important on a global scale. To assist informed management decisions and quantify relationships between end-of-season defoliation and yield loss, meta-analyses were conducted over 140 datasets meeting established criteria. Slopes of proportion yield loss with increasing defoliation were estimated separately for Virginia and runner market type cultivars. Yield loss for Virginia types was described by an exponential function over the range of defoliation levels, with a loss increase of 1.2 to 2.2% relative to current loss levels per additional percent defoliation. Results for runner market type cultivars showed yield loss to linearly increase 2.2 to 2.8% per 10% increase in defoliation for levels up to approximately 95% defoliation, after which the rate of yield loss was exponential. Defoliation thresholds to prevent economic yield loss for Virginia and runner types were estimated at 40 and 50%, respectively. Although numerous factors remain important in mitigating overall yield losses, the integration of these findings should aid recommendations about digging under varying defoliation intensities and peanut maturities to assist in minimizing yield losses.


Asunto(s)
Arachis , Ascomicetos , Virginia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...