Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ambio ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709449

RESUMEN

The study examines the governance of low trophic species mariculture (LTM) using Sweden as a case study. LTM, involving species such as seaweeds and mollusks, offers ecosystem services and nutritious foods. Despite its potential to contribute to blue growth and Sustainable Development Goals, LTM development in the EU and OECD countries has stagnated. A framework for mapping governance elements (institutions, structures, and processes) and analyzing governance objective (effective, equitable, responsive, and robust) was combined with surveys addressed to the private entrepreneurs in the sector. Analysis reveals ineffective institutions due to lack of updated legislation and guidance, resulting in ambiguous interpretations. Governance structures include multiple decision-making bodies without a clear coordination agency. Licensing processes were lengthy and costly for the private entrepreneurs, and the outcomes were uncertain. To support Sweden's blue bioeconomy, LTM governance requires policy integration, clearer direction, coordinated decision-making, and mechanisms for conflict resolution and learning.

2.
Sci Total Environ ; 903: 166861, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37673254

RESUMEN

The environmental benefits of seaweed cultivation have gained a lot of attention, both in policy strategies and by private companies. Sustainability evaluations of seaweed farming have however focused on a very small part of global production of seaweed - on European cultivations at research and pilot-scales although Asia stands for 99 % of global production with China alone producing 60 %. In this study, we use Life Cycle Assessment (LCA) to evaluate the environmental performance of a 400-hectare Chinese kelp farm with a yearly harvest of 60,000 tons. Primary data from the farm was used to assess impacts up until harvest for the functional unit of 1 ton of fresh-weight kelp. Included in the LCA were impact on climate change, acidification terrestrial and marine eutrophication, and use of land water and energy. In addition, we calculated nutrient uptake. Further, we extracted inventory data of four published LCA studies of farmed kelp and recalculated environmental impacts, applying the same background data and method choices with the aim to compare the effects of scale and cultivation system. The results of the hotspot analysis showed that the plastic ropes and buoys dominated impacts on climate change, freshwater and marine eutrophication, and energy consumption. Consequently, the most effective improvement action was recycling after use. The yearly harvest of the Chinese farm was 1000-4000 times larger than previously evaluated farms compared. Results suggest that streamlined and mature production in the large-scale Chinese kelp farm led to lower electricity and fuel consumption compared to small-scale production, thus placing the Chinese farm with a climate impact of 57.5 kg CO2 eq. per ton fresh-weight kelp on the lower end when comparing the carbon footprint. There was a large variation in carbon footprints, which implies that the kelp cultivation sector has considerable room for optimization.

3.
Sci Total Environ ; 854: 158445, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36058335

RESUMEN

The versatility of microalgae biomass as candidates for various products and bioremediation needs motivates interests towards design and implementation of novel microalgae bioreactors. Conventional open-reactors are reliant on large quantities of sunlight and space while yields are constrained by outdoor environment conditions. Conversely, closed-reactor systems like bubble columns reduces these constrains on microalgae growth while occupying far less space at the expense of high energy demands, notably from lighting systems. A novel patented closed reactor design has recently been proposed that improves the bubble column concept with an efficient and effective lighting system. The present study uses Life Cycle Assessment approach to compare the environmental performance of conventional reactors and the proposed internally luminated novel closed reactor design, expressing impacts per kg biostimulant for the Scenedesmus almeriensis harvest from such units. All performance data was collected from a pilot facility in Almeria, Spain. Urban-industrial symbiosis scenarios are also portrayed in the study using wastewater and incinerator flue gas. Results show that under synthetic nutrient and carbon inputs in Spanish pilot operations, the cumulative energy demand for the novel photobioreactors is similar to conventional vertically-stacked horizon bioreactors but are substantially more demanding than conventional open reactors. However, when leveraging renewable energy sources and the photosynthesis process to consume wastestreams in urban-industrial symbiosis scenarios, the novel photobioreactor was able to achieve up to 80 % improvements in several impact categories e.g. eutrophication and climate change. Impact mitigation credits per kg dwt biomass across all energy scenarios in symbiosis amount to ≈1.8 kg CO2eq and ≈0.09 kg PO4 eq. This highlights that such closed and internally illuminated photobioreactors can be competitive with conventional reactors, and have potential to harness photosynthesis to reduce environmental burdens in an urban-industrial symbiosis setting. Possible economies of scale and the associated potential gains in efficiencies are further discussed.


Asunto(s)
Microalgas , Animales , Simbiosis , Fotobiorreactores , Ambiente , Estadios del Ciclo de Vida , Biomasa
4.
Ambio ; 51(4): 901-913, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34599483

RESUMEN

Acceptance by, and cooperation with relevant stakeholders in developing new sustainability initiatives when they are generally perceived as positive, is one of the keys for successful implementation of such new sustainability initiatives later on. It is remarkable, however, that ample literature exists about involving stakeholders in research projects focusing on problems with diverging views (controversy) around facts and values (wicked problems), but there is very little literature addressing whether and how to involve relevant stakeholders in case of initiatives where diverging norms and values do not play a (substantial) role, like in sustainability assessment for a future seaweed industry. This perspectives paper addresses that gap, and explores how to design such sustainability assessment, illustrated by how stakeholder interaction influenced the assessment and its results for a future seaweed industry in Sweden, followed by a discussion whether and how a similar approach may benefit sustainability assessment of other non-wicked sustainability initiatives.


Asunto(s)
Algas Marinas , Participación de los Interesados , Suecia
5.
Ambio ; 47(4): 398-409, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28940171

RESUMEN

Efforts are on the way on the Swedish West Coast to develop the capacity for cultivation of marine resources, notably of kelps. Given that this is a region of great natural and national heritage, public opposition to marine developments has been identified as a possible risk factor. This survey thus sought to shed light on awareness levels, perceptions of different types of aquaculture and on reactions to a scenario depicting future aquaculture developments on the West Coast. When asked about their general opinions of aquaculture, respondents tended to be favourable though a majority chose neutral responses. On the whole, respondents were favourable to the depicted scenario. Finally, it was found that the high-awareness group tended to be more supportive than the low or medium-awareness groups, hinting at the benefits of increasing awareness to reduce public aversion and to support a sustainable development of aquaculture on the Swedish West Coast.


Asunto(s)
Acuicultura , Conservación de los Recursos Naturales , Animales , Biodiversidad , Femenino , Humanos , Masculino , Percepción , Opinión Pública , Suecia
6.
Sci Total Environ ; 573: 347-355, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27572527

RESUMEN

The cultivation of seaweed as a feedstock for third generation biofuels is gathering interest in Europe, however, many questions remain unanswered in practise, notably regarding scales of operation, energy returns on investment (EROI) and greenhouse gas (GHG) emissions, all of which are crucial to determine commercial viability. This study performed an energy and GHG emissions analysis, using EROI and GHG savings potential respectively, as indicators of commercial viability for two systems: the Swedish Seafarm project's seaweed cultivation (0.5ha), biogas and fertilizer biorefinery, and an estimation of the same system scaled up and adjusted to a cultivation of 10ha. Based on a conservative estimate of biogas yield, neither the 0.5ha case nor the up-scaled 10ha estimates met the (commercial viability) target EROI of 3, nor the European Union Renewable Energy Directive GHG savings target of 60% for biofuels, however the potential for commercial viability was substantially improved by scaling up operations: GHG emissions and energy demand, per unit of biogas, was almost halved by scaling operations up by a factor of twenty, thereby approaching the EROI and GHG savings targets set, under beneficial biogas production conditions. Further analysis identified processes whose optimisations would have a large impact on energy use and emissions (such as anaerobic digestion) as well as others embodying potential for further economies of scale (such as harvesting), both of which would be of interest for future developments of kelp to biogas and fertilizer biorefineries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...