Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.827
Filtrar
1.
Sci Data ; 11(1): 845, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097645

RESUMEN

Chloride deposits are markers for early Mars' aqueous past, with important implications for our understanding of the martian climate and habitability. The Colour and Stereo Surface Imaging System (CaSSIS) onboard ESA's Trace Gas Orbiter provides high-resolution color-infrared images, enabling a planet-wide search for (small) potentially chloride-bearing deposits. Here, we use a neural network to map potentially chloride-bearing deposits in CaSSIS images over a significant fraction of the planet. We identify 965 chloride deposit candidates with diameters ranging from <300 to >3000 m, including previously unknown deposits, 136 (~14%) of which are located in the highlands north of the equator, up to ~36°N. Northern chloride candidates tend to be smaller than in the south and are predominantly located in small-scale topographic depressions in low-albedo Noachian and Hesperian highland terranes. Our new dataset augments existing chloride deposit maps, informs current and future imaging campaigns, and enables future modelling work towards a better understanding of the distribution of near-surface water in Mars' distant past.

2.
Mol Cancer Ther ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148328

RESUMEN

The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified a high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TBK1(TANK-binding kinase 1) inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment, and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcoma.

3.
ACS Infect Dis ; 10(8): 2899-2912, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39087267

RESUMEN

The control of malaria, a disease caused by Plasmodium parasites that kills over half a million people every year, is threatened by the continual emergence and spread of drug resistance. Therefore, new molecules with different mechanisms of action are needed in the antimalarial drug development pipeline. Peptides developed from host defense molecules are gaining traction as anti-infectives due to theood of inducing drug resistance. Human platelet factor 4 (PF4) has intrinsic activity against P. falciparum, and a macrocyclic helix-loop-helix peptide derived from its active domain recapitulates this activity. In this study, we used a stepwise approach to optimize first-generation PF4-derived internalization peptides (PDIPs) by producing analogues with substitutions to charged and hydrophobic amino acid residues or with modifications to terminal residues including backbone cyclization. We evaluated the in vitro activity of PDIP analogues against P. falciparum compared to their overall helical structure, resistance to breakdown by serum proteases, selective binding to negatively charged membranes, and hemolytic activity. Next, we combined antiplasmodial potency-enhancing substitutions that retained favorable membrane and cell-selective properties onto the most stable scaffold to produce a backbone cyclic PDIP analogue with four-fold improved activity against P. falciparum compared to first-generation peptides. These studies demonstrate the ability to modify PDIP to select for and combine desirable properties and further validate the suitability of this unique peptide scaffold for developing a new molecule class that is distinct from existing antimalarial drugs.


Asunto(s)
Antimaláricos , Péptidos , Plasmodium falciparum , Factor Plaquetario 4 , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Humanos , Factor Plaquetario 4/química , Factor Plaquetario 4/farmacología , Péptidos/farmacología , Péptidos/química , Relación Estructura-Actividad
4.
Nat Commun ; 15(1): 6152, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034312

RESUMEN

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.


Asunto(s)
Glutamato-Cisteína Ligasa , Glutatión , Hígado , Factor 2 Relacionado con NF-E2 , Triglicéridos , Animales , Glutatión/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Hígado/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Ratones , Triglicéridos/metabolismo , Estrés Oxidativo , Masculino , Metabolismo de los Lípidos , Ratones Noqueados , Ratones Endogámicos C57BL , Oxidación-Reducción , Lipogénesis/genética
5.
J Avian Med Surg ; 38(2): 98-107, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980819

RESUMEN

The objective of this study was to establish the pharmacokinetics of a single oral dose of trazodone in the Hispaniolan Amazon parrot (Amazona ventralis). Trazodone is a selective serotonin antagonist and reuptake inhibitor used commonly in both human and veterinary medicine as an antidepressant behavioral modification medicine. A single oral dose of compounded trazodone hydrochloride solution (20 mg/mL) at 50 mg/kg was administered to a total of 7 healthy adult Hispaniolan Amazon parrots. The 7 healthy adult parrots ranged in age from 10 to 15 years and weighed 228 to 323g. Blood was collected at baseline (2 weeks before study) and at 1, 2, 4, 6, 10, and 14 hours post-drug administration. Plasma concentrations of both trazodone and its active metabolite m-chlorophenylpiperazine (mCPP) were measured via liquid chromatography tandem mass spectrometry. Noncompartmental pharmacokinetic analysis was completed. The half-life (t1/2) ± SD of trazodone for the Hispaniolan parrots was 1.89 ± 0.49 hours, and the t1/2 ± SD of mCPP metabolite was 1.9 ± 0.55 hours. Maximum serum drug concentrations, or Cmax (ng/mL), were 738.3 ± 285.3 for trazodone. Times to achieve Cmax (hours) for trazadone and the mCPP metabolite were 1 hour and 2 hours postdosing, respectively. While this study did not establish the behavioral effects of trazodone, no adverse side effects were observed throughout the 48-hour period following drug administration and blood collection. Our results indicate that the oral administration of a 50-mg/kg single dose of trazodone to Hispaniolan parrots may be considered a safe dose. Plasma concentrations are comparable to previously published values in humans, dogs, horses, and pigeons (Columba livia domestica) for up to 14 hours following dosing. This study indicates that further studies are needed to establish the pharmacodynamics and the efficacy of trazodone in the medical management of behavioral problems in psittacine species.


Asunto(s)
Amazona , Trazodona , Animales , Trazodona/farmacocinética , Trazodona/administración & dosificación , Trazodona/sangre , Amazona/sangre , Semivida , Masculino , Área Bajo la Curva , Inhibidores Selectivos de la Recaptación de Serotonina/farmacocinética , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/sangre , Femenino , Administración Oral
6.
Artículo en Inglés | MEDLINE | ID: mdl-38951991

RESUMEN

Alveolar ridge resorption following tooth extraction poses significant challenges for future dental restorations. This study investigated the efficacy of fish scale-derived hydroxyapatite (FSHA) as a socket preservation graft material to maintain alveolar bone volume and architecture. FSHA was extracted from *Labeo rohita* fish scales and characterized using Fourier transform infrared (FTIR) analysis. In vitro, biocompatibility and osteogenic potential were assessed using Saos-2 human osteosarcoma cells. Cell viability, migration, and proliferation were evaluated using MTT and scratch assays. In vivo performance was assessed in a rat model, and FSHA was compared to a commercial xenograft (Osseograft) and ungrafted controls. Histological analysis was performed at 8-week post-implantation to quantify new bone formation. FTIR confirmed the purity and homogeneity of FSHA. In vitro, FSHA enhanced Saos-2 viability, migration, and proliferation compared to controls. In vivo, FSHA demonstrated superior bone regeneration compared to Osseograft and ungrafted sites, with balanced graft resorption and new bone formation. Histological analysis revealed an active incorporation of FSHA into new bone, with minimal gaps and ongoing remodeling. Approximately 50%-60% of FSHA was resorbed by 8 weeks, closely matching the rate of new bone deposition. FSHA stimulated more bone formation in the apical socket region than in coronal areas. In conclusion, FSHA is a promising biomaterial for alveolar ridge preservation, exhibiting excellent biocompatibility, osteogenic potential, and balanced resorption. Its ability to promote robust bone regeneration highlights its potential as an effective alternative to currently used graft materials in socket preservation procedures.

7.
J Avian Med Surg ; 38(2): 83-90, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980817

RESUMEN

Renal disease is often identified as a cause of morbidity and mortality in avian patients. However, currently, early antemortem detection of renal disease in avian patients is difficult. Anatomical and physiological differences between mammals and birds mean the use of commonly employed diagnostic testing (ie, measurement of blood urea nitrogen [BUN] and serum creatinine, urinalysis, and ultrasonography) are either nondiagnostic or difficult to achieve. Symmetric dimethylarginine (SDMA) is considered a more sensitive marker for renal disease in humans, dogs, and cats. However, SDMA has not yet been assessed for diagnostic use in any psittacine species. In this study, we establish reference ranges for SDMA in both Hispaniolan Amazon parrots (Amazona ventralis, HAP) and Quaker parrots (Myiopsitta monachus, QP). Blood was collected from 23 Amazon parrots and 32 Quaker parrots maintained in research facilities. Measurement of SDMA through a commercially available immunoassay (IA-SDMA) as well as creatinine, BUN, uric acid, phosphorus, calcium, sodium, potassium, and chloride were determined through IDEXX Laboratories. Plasma SDMA concentrations ranged from 6 to 15 µg/dL and 3 to 15 µg/dL for the HAP and QP, respectively. Sex was a confounding factor for the QP population, but sex did not have a significant effect on SDMA for the HAP population. No significant correlations were identified between SDMA concentrations and other parameters in either psittacine species. Our results show proof of concept for the IA-SDMA and provide reference intervals for SDMA in HAP and QP. Further investigation is required to determine the validity of this assay and the predictive power of SDMA in the detection of renal impairment for parrots and other common companion birds.


Asunto(s)
Arginina , Loros , Animales , Valores de Referencia , Masculino , Arginina/análogos & derivados , Arginina/sangre , Femenino , Loros/sangre , Amazona/sangre , Biomarcadores/sangre
8.
J Infect Dis ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979599

RESUMEN

BACKGROUND: The Dantu blood group variant protects against P. falciparum infections but its wider consequences have not been previously explored. Here, we investigate the impact of Dantu on susceptibility to bacteraemia. METHODS: We conducted a case-control study in children presenting with community-acquired bacteraemia to Kilifi County Hospital in Kenya between 1998 and 2010. We used logistic regression to test for associations between the Dantu marker SNP rs186873296 A>G and both all-cause and pathogen-specific bacteraemia under an additive model. We used date of admission as a proxy measure of malaria transmission intensity, given known differences in malaria prevalence over the course of the study. RESULTS: Dantu was associated with protection from all-cause bacteraemia (OR=0.81, p=0.014), the association being greatest in homozygotes (OR=0.30, p=0.013). This protection was shared across the major bacterial pathogens but, notably, was only significant during the era of high malaria-transmission pre-2003 (OR=0.79, p=0.023). CONCLUSIONS: Consistent with previous studies showing the indirect impact on bacteraemia risk of other malaria-associated red cell variants, our study also shows that Dantu is protective against bacteraemia via its effect on malaria risk. Dantu does not appear to be under balancing selection through an increased risk of bacterial infections.

9.
BMC Pulm Med ; 24(1): 366, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39080682

RESUMEN

BACKGROUND: Severe COVID-19 carries a high morbidity and mortality. Previous studies have shown an association between COVID-19 severity and SARS-CoV-2 viral load (VL). We sought to measure VL in multiple compartments (urine, plasma, lower respiratory tract) in patients admitted to the intensive care unit (ICU) with severe COVID-19 pneumonia and correlate with clinical outcomes. METHODS: Plasma, urine, and endotracheal aspirate (ETA) samples were obtained on days 1, 3, 7, 14, and 21 from subjects admitted to the ICU with severe COVID-19. VL was measured via reverse transcriptase polymerase chain reaction. Clinical data was collected from the electronic health record. Grouped comparisons were performed using Student's t-test or 1-way ANOVA. Linear regression was used to correlate VL from different compartments collected at the same time. Logistic regression was performed to model ventilator-freedom at 28 days as a function of peak plasma VL. RESULTS: We enrolled 57 subjects with severe COVID-19 and measured VL in plasma (n = 57), urine (n = 25), and ETA (n = 34). Ventilator-associated pneumonia developed in 63% of subjects. 49% of subjects were viremic on study day 1. VL in plasma and ETA both significantly decreased by day 14 (P < 0.05), and the two were weakly correlated on study day 1 (P = 0.0037, r2 = 0.2343) and on all study days (P < 0.001, r2 = 0.2211). VL were not detected in urine. While no associations were observed with peak ETA VL, subjects with higher peak plasma VL experienced a greater number of respiratory complications, including ventilator-associated pneumonia and fewer ventilator-free and hospital-free days. There was no association between VL in either plasma or ETA and mortality. In viremic patients, plasma VL was significantly lower in subjects that were ICU-free and ventilator-free (P < 0.05), with trends noted for hospital-freedom, ventilator-associated pneumonia, and survival to discharge (P < 0.1). By logistic regression, plasma VL was inversely associated with ventilator-freedom at 28 days (odds ratio 0.14, 95% confidence interval 0.02-0.50). CONCLUSIONS: Elevated SARS-CoV-2 VL in the plasma but not in the lower respiratory tract is a novel biomarker in severe COVID-19 for respiratory complications.


Asunto(s)
COVID-19 , Unidades de Cuidados Intensivos , SARS-CoV-2 , Carga Viral , Viremia , Humanos , COVID-19/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Anciano , Índice de Severidad de la Enfermedad , Neumonía Asociada al Ventilador/epidemiología , Neumonía Asociada al Ventilador/virología , Adulto
11.
Front Bioeng Biotechnol ; 12: 1357182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983601

RESUMEN

The number of lung transplantations is limited due to the shortage of donor lungs fulfilling the standard criteria. The ex vivo lung perfusion (EVLP) technique provides the ability of re-evaluating and potentially improving and treating marginal donor lungs. Accordingly, the technique has emerged as an essential tool to increase the much-needed donor lung pool. One of the major EVLP protocols, the Lund protocol, characterized by high pulmonary artery flow (100% of cardiac output [CO]), an open atrium, and a cellular perfusate, has demonstrated encouraging short-EVLP duration results. However, the potential of the longer EVLP duration of the protocol is yet to be investigated, a duration which is considered necessary to rescue more marginal donor lungs in future. This study aimed to achieve stable 8-h EVLP using an open-atrium cellular model with three different pulmonary artery flows in addition to determining the most optimal flow in terms of best lung performance, including lung electrolytes and least lung edema formation, perfusate and tissue inflammation, and histopathological changes, using the porcine model. EVLP was performed using a flow of either 40% (n = 6), 80% (n = 6), or 100% (n = 6) of CO. No flow rate demonstrated stable 8-h EVLP. Stable 2-h EVLP was observed in all three groups. Insignificant deterioration was observed in dynamic compliance, peak airway pressure, and oxygenation between the groups. Pulmonary vascular resistance increased significantly in the 40% group (p < .05). Electrolytes demonstrated an insignificant worsening trend with longer EVLP. Interleukin-8 (IL-8) in perfusate and tissue, wet-to-dry weight ratio, and histopathological changes after EVLP were insignificantly time dependent between the groups. This study demonstrated that stable 8-h EVLP was not feasible in an open-atrium cellular model regardless of the flow of 40%, 80%, or 100% of CO. No flow was superior in terms of lung performance, lung electrolytes changes, least lung edema formation, minimal IL-8 expression in perfusate and tissue, and histopathological changes.

12.
Int J Biol Macromol ; 276(Pt 2): 133971, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032890

RESUMEN

Exploration of Pleurotus ostreatus as a biological agent in the degradation of persistent plastics like polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, revealing a promising avenue toward mitigating the environmental impacts of plastic pollution. Leveraging the intrinsic enzymatic capabilities of this fungus, mainly its production of laccase, presents a sustainable and eco-friendly approach to breaking down complex polymer chains into less harmful constituents. This review focused on enhancements in the strain's efficiency through genetic engineering, optimized culture conditions, and enzyme immobilization to underscore the potential for scalability and practical application of this bioremediation process. The utilization of laccase from P. ostreatus in plastic waste management demonstrates a vital step forward in pursuing sustainable environmental solutions. By using the potential of fungal bioremediation, researchers can move closer to a future in which the adverse effects of plastic pollution are significantly mitigated, benefiting the health of our planet and future generations.

13.
J Adolesc ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075641

RESUMEN

INTRODUCTION: Many adolescents are in their first romantic relationship; at the same time, depressive symptoms generally increase during this developmental stage. In adults, equity of support in romantic relationships is associated with less depressive symptoms-especially in female partners, who are generally on "the losing side" of support transactions with male partners. This study examines whether equity of dyadic coping is associated with depressive symptoms in adolescent mixed-gender couples. We disentangle equity of positive and negative dyadic coping, as differential effects might arise. METHODS: Self-report data on dyadic coping and depressive symptoms were gathered from 124 mixed-gender couples aged between 16 and 21 years living in Switzerland between 2011 and 2013. Equity of dyadic coping was quantified by calculating the difference between received dyadic coping and provided dyadic coping for each partner separately. These difference scores and the overall level of dyadic coping were used to predict depressive symptoms in both partners using an Actor-Partner-Interdependence Model. RESULTS: For female adolescents, we found the expected curvilinear association between equity of negative dyadic coping behaviors and depressive symptoms (actor effect). Additionally, the female perception of equity of positive dyadic coping was correlated with less depressive symptoms in male partners (partner effect). For male adolescents, receiving more positive dyadic coping than they provided was associated with more depressive symptoms (actor effect). DISCUSSION: In female partners, results resembled those in adult mixed-gender couples. In male partners, results changed depending on the direction of inequity-possibly due to gender role development.

14.
Genes Genomics ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083157

RESUMEN

BACKGROUND: Schizophrenia is a mental disorder that causes considerable morbidity, whose risk largely results from genetic factors. Setd1a is a gene implicated in schizophrenia. OBJECTIVE: To study the gene expression changes found in heterozygous Setd1a± knockout mice in order to gain useful insight into schizophrenia pathogenesis. METHODS: We mined a single-cell RNA sequencing (scRNAseq) dataset from the prefrontal cortex (PFC) and striatum of Setd1a± mice and identified cell type-specific differentially expressed genes (DEGs) and differential transcript usage (DTU). DEGs and genes containing DTU found in each cell type were used to identify affected biological pathways using Ingenuity Pathway Analysis (IPA). RESULTS: We identified 273 unique DEGs across all cell types in PFC and 675 unique gene peaks containing DTU. In striatum, we identified 327 unique DEGs across all cell types and 8 unique gene peaks containing DTU. Key IPA findings from the analysis of DEGs found in PFC and striatum implicate processes involved in protein synthesis, mitochondrial function, cell metabolism, and inflammation. IPA analysis of genes containing DTU in PFC points to protein synthesis, as well as cellular activities involving intracellular signaling and neurotransmission. One canonical pathway, 'EIF2 Signaling', which is involved in the regulation of protein synthesis, was detected in PFC DEGs, striatum DEGs, and PFC genes containing DTU, drawing attention to its importance in schizophrenia pathophysiology. CONCLUSION: Processes involving protein synthesis in general and the 'EIF2 Signaling' pathway in particular could be targets for the development of new research strategies and biomarkers in schizophrenia.

15.
Chem Res Toxicol ; 37(6): 923-934, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842447

RESUMEN

Benchmark dose (BMD) modeling estimates the dose of a chemical that causes a perturbation from baseline. Transcriptional BMDs have been shown to be relatively consistent with apical end point BMDs, opening the door to using molecular BMDs to derive human health-based guidance values for chemical exposure. Metabolomics measures the responses of small-molecule endogenous metabolites to chemical exposure, complementing transcriptomics by characterizing downstream molecular phenotypes that are more closely associated with apical end points. The aim of this study was to apply BMD modeling to in vivo metabolomics data, to compare metabolic BMDs to both transcriptional and apical end point BMDs. This builds upon our previous application of transcriptomics and BMD modeling to a 5-day rat study of triphenyl phosphate (TPhP), applying metabolomics to the same archived tissues. Specifically, liver from rats exposed to five doses of TPhP was investigated using liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance spectroscopy-based metabolomics. Following the application of BMDExpress2 software, 2903 endogenous metabolic features yielded viable dose-response models, confirming a perturbation to the liver metabolome. Metabolic BMD estimates were similarly sensitive to transcriptional BMDs, and more sensitive than both clinical chemistry and apical end point BMDs. Pathway analysis of the multiomics data sets revealed a major effect of TPhP exposure on cholesterol (and downstream) pathways, consistent with clinical chemistry measurements. Additionally, the transcriptomics data indicated that TPhP activated xenobiotic metabolism pathways, which was confirmed by using the underexploited capability of metabolomics to detect xenobiotic-related compounds. Eleven biotransformation products of TPhP were discovered, and their levels were highly correlated with multiple xenobiotic metabolism genes. This work provides a case study showing how metabolomics and transcriptomics can estimate mechanistically anchored points-of-departure. Furthermore, the study demonstrates how metabolomics can also discover biotransformation products, which could be of value within a regulatory setting, for example, as an enhancement of OECD Test Guideline 417 (toxicokinetics).


Asunto(s)
Biotransformación , Hígado , Metabolómica , Animales , Ratas , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Relación Dosis-Respuesta a Droga , Benchmarking , Organofosfatos/toxicidad , Organofosfatos/metabolismo , Ratas Sprague-Dawley
16.
Integr Comp Biol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886119

RESUMEN

Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals, or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of CO2 and H2O gas exchange and forest productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought including growth cessation, mortality and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate, and provide new mechanistic understanding and prediction of forest water use and productivity.

17.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915729

RESUMEN

The receptor tyrosine kinase EphA2 drives cancer malignancy by facilitating metastasis. EphA2 can be found in different self-assembly states: as a monomer, dimer, and oligomer. However, our understanding remains limited regarding which EphA2 state is responsible for driving pro-metastatic signaling. To address this limitation, we have developed SiMPull-POP, a single-molecule method for accurate quantification of membrane protein self-assembly. Our experiments revealed that a reduction of plasma membrane cholesterol strongly promoted EphA2 self-assembly. Indeed, low cholesterol caused a similar effect to the EphA2 ligand ephrinA1-Fc. These results indicate that cholesterol inhibits EphA2 assembly. Phosphorylation studies in different cell lines revealed that low cholesterol increased phospho-serine levels, the signature of oncogenic signaling. Investigation of the mechanism that cholesterol uses to inhibit the assembly and activity of EphA2 indicate an in-trans effect, where EphA2 is phosphorylated by protein kinase A downstream of beta-adrenergic receptor activity, which cholesterol also inhibits. Our study not only provides new mechanistic insights on EphA2 oncogenic function, but also suggests that cholesterol acts as a molecular safeguard mechanism that prevents uncontrolled self-assembly and activation of EphA2.

18.
J Immunol Methods ; 531: 113699, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823575

RESUMEN

Bead array assays, such as those sold by Luminex, BD Biosciences, Sartorius, Abcam and other companies, are a well-established platform for multiplexed quantification of cytokines and other biomarkers in both clinical and discovery research environments. In 2011, the National Institute of Allergy and Infectious Diseases (NIAID)-funded External Quality Assurance Program Oversight Laboratory (EQAPOL) established a proficiency assessment program to monitor participating laboratories performing multiplex cytokine measurements using Luminex bead array technology. During every assessment cycle, each site was sent an assay kit, a protocol, and blinded samples of human sera spiked with recombinant cytokines. Site results were then evaluated for performance relative to peer laboratories. After over a decade of biannual assessments, the cumulative dataset contained over 15,500 bead array observations collected at more than forty laboratories in twelve countries. These data were evaluated alongside post-assessment survey results to empirically test factors that may contribute to variability and accuracy in Luminex bead-based cytokine assays. Bead material, individual technical ability, analyte, analyte concentration, and assay kit vendor were identified as significant contributors to assay performance. In contrast, the bead reader instrument model and the use of automated plate washers were found not to contribute to variability or accuracy, and sample results were found to be highly-consistent between assay kit-manufacturing lots and over time. In addition to these statistical analyses, subjective evaluations identified technical ability, instrument failure, protocol adherence, and data transcription errors as the most common causes of poor performance in the proficiency program. The findings from the EQAPOL multiplex program were then used to develop recommended best practices for bead array monitoring of human cytokines. These included collecting samples to assay as a single batch, centralizing analysis, participating in a quality assurance program, and testing samples using paramagnetic-bead kits from a single manufacturer using a standardized protocol.


Asunto(s)
Citocinas , Ensayos de Aptitud de Laboratorios , Humanos , Citocinas/sangre , Reproducibilidad de los Resultados , Control de Calidad , Inmunoensayo/métodos , Inmunoensayo/normas , Estados Unidos , Biomarcadores/sangre
19.
Cell Host Microbe ; 32(7): 1147-1162.e12, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917808

RESUMEN

Gut bacteria are implicated in inflammatory bowel disease (IBD), but the strains driving these associations are unknown. Large-scale studies of microbiome evolution could reveal the imprint of disease on gut bacteria, thus pinpointing the strains and genes that may underlie inflammation. Here, we use stool metagenomes of thousands of IBD patients and healthy controls to reconstruct 140,000 strain genotypes, revealing hundreds of lineages enriched in IBD. We demonstrate that these strains are ancient, taxonomically diverse, and ubiquitous in humans. Moreover, disease-associated strains outcompete their healthy counterparts during inflammation, implying long-term adaptation to disease. Strain genetic differences map onto known axes of inflammation, including oxidative stress, nutrient biosynthesis, and immune evasion. Lastly, the loss of health-associated strains of Eggerthella lenta was predictive of fecal calprotectin, a biomarker of disease severity. Our work identifies reservoirs of strain diversity that may impact inflammatory disease and can be extended to other microbiome-associated diseases.


Asunto(s)
Heces , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Metagenoma , Filogenia , Genotipo
20.
Microbiol Spectr ; 12(7): e0410823, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38832899

RESUMEN

The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙108 read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs. IMPORTANCE: Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.


Asunto(s)
Antibacterianos , Bacterias , Farmacorresistencia Bacteriana , Metagenómica , Humanos , Antibacterianos/farmacología , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Farmacorresistencia Bacteriana/genética , Animales , Genes Bacterianos/genética , Microbiología del Suelo , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA