Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 454: 139792, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38810452

RESUMEN

Terpenes in essential oils (EOs) have recently received significant attention due to their potential to improve brain and whole-body health. A deeper understanding of the terpene composition of edible EOs is important for fully exploring their possible applications. In our study, we employed a comprehensive study using four different methods to analyze EO samples, including GC-MS with solid phase microextraction (SPME), liquid injection (LI), derivatization to trimethylsilyl ethers (TMSE), and LC-MS. Our findings revealed that relying on a single analytical method may be insufficient for detecting all terpenes in EOs. Despite identifying a total of 156 terpenes in the samples, only 58 were detectable across all 4 methods. To obtain a more accurate terpene profile of EOs, we advocate for the combined use of LI-GC and TMSE-GC. The terpenes detected by these two methods are complementary, enabling the detection of all terpenes with high VIP in the samples.

2.
Antioxidants (Basel) ; 13(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38397823

RESUMEN

Apple pomace (AP) is a bio-waste product of apples that is co-produced as a by-product during apples' processing for making apple-based products, mainly apple juice, cider and vinegar. AP is a rich source of several bioactives that can be valorized as ingredients for developing novel functional foods, supplements and nutraceuticals. Within the present study, food-grade extracts from AP with different tannin contents were found to contain bioactive polar lipids (PLs), phenolics and carotenoids with strong anti-oxidant, antithrombotic and anti-inflammatory properties. The extract from the low-in-tannins AP showed stronger anti-inflammatory potency in human platelets against the potent thrombo-inflammatory mediator platelet-activating factor (PAF), while it also exhibited considerable anti-platelet effects against the standard platelet agonist, adenosine diphosphate (ADP). The infusion of 0.5-1.0 g of this bioactive AP extract as functional ingredients for whole-grain bread-making resulted in the production of novel bio-functional bread products with stronger anti-oxidant, antithrombotic and anti-inflammatory potency against both PAF and ADP in human platelets, compared to the standard non-infused control breads. Structural analysis by LCMS showed that the PL-bioactives from all these sources (AP and the bio-functional breads) are rich in bioactive unsaturated fatty acids (UFA), especially in the omega-9 oleic acid (OA; 18:1n9), the omega-3 alpha linolenic acid (ALA; 18:n3) and the omega-6 linoleic acid (LA; 18:2n6), which further supports their strong anti-inflammatory and antithrombotic properties. All food-grade extracted AP including that infused with AP-bioactives novel functional breads showed higher hydrophilic, lipophilic and total phenolic content, as well as total carotenoid content, and subsequently stronger antioxidant capacity. These results showed the potential of appropriately valorizing AP-extracts in developing novel bio-functional bakery products, as well as in other health-promoting applications. Nevertheless, more studies are needed to fully elucidate and/or validate the anti-inflammatory, antithrombotic and antioxidant potential of novel bio-functional products across the food and cosmetic sectors when infused with these AP bioactives.

3.
BMC Plant Biol ; 24(1): 154, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424489

RESUMEN

BACKGROUND: Soybean is one of the most cultivated crops globally and a staple food for much of the world's population. The annual global crop losses due to infection by Phytophthora sojae is currently estimated at $20B USD, yet we have limited understanding of the role of lipid mediators in the adaptative strategies used by the host plant to limit infection. Since root is the initial site of this infection, we examined the infection process in soybean root infected with Phytophthora sojae using scanning electron microscopy to observe the changes in root morphology and a multi-modal lipidomics approach to investigate how soybean cultivars remodel their lipid mediators to successfully limit infection by Phytophthora sojae. RESULTS: The results reveal the presence of elevated biogenic crystals and more severe damaged cells in the root morphology of the infected susceptible cultivar compared to the infected tolerant cultivars. Furthermore, induced accumulation of stigmasterol was observed in the susceptible cultivar whereas, induced accumulation of phospholipids and glycerolipids occurred in tolerant cultivar. CONCLUSION: The altered lipidome reported in this study suggest diacylglycerol and phosphatidic acid mediated lipid signalling impacting phytosterol anabolism appears to be a strategy used by tolerant soybean cultivars to successfully limit infection and colonization by Phytophthora sojae.


Asunto(s)
Glycine max , Phytophthora , Phytophthora/fisiología , Resistencia a la Enfermedad , Inmunidad de la Planta , Fosfolípidos , Enfermedades de las Plantas
4.
Sci Rep ; 14(1): 1934, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253671

RESUMEN

Pyroligneous acid (PA) is rich in bioactive compounds and known to have the potential to improve crop productivity and phytochemical content. However, the synergistic effect of PA and fertilizer has not been thoroughly studied. In this study, we assessed the biostimulatory effect of different rates of foliar PA application (i.e., 0, 0.25, 0.5, 1, and 2% PA/ddH2O (v/v)) combined with full rate (i.e., 0.63, 0.28, 1.03 g) and half rate of nitrogen-phosphorus-potassium (NPK) fertilizer on the yield and nutritional quality of greenhouse-grown tomato (Solanum lycopersicum 'Scotia'). Plants treated with 0.25% and 0.5% PA showed a significantly (p < 0.001) higher maximum quantum efficiency of photosystem II (Fv/Fm) and increased potential photosynthetic capacity (Fv/Fo), especially when combined with the full NPK rate. Leaf chlorophyll was significantly (p < 0.001) increased by approximately 0.60 and 0.49 folds in plants treated with 2% PA and full NPK rate compared to no spray and water, respectively. Total number of fruits was significantly (p < 0.001) increased by approximately 0.56 folds with the 2% PA irrespective of the NPK rate. The combined 2% PA and full NPK rate enhanced total fruit weight and the number of marketable fruits. Similarly, fruit protein, sugar and 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity were significantly (p < 0.001) enhanced by the combined 2% PA and full NPK rate. In contrast, the 0.5% PA combined with half NPK rate increased fruit carotenoid and phenolic contents while the 2% PA plus half NPK rate enhanced fruit flavonoid content. Generally, the synergistic effect of PA and NPK fertilizer increased fruit elemental composition. These showed that foliar application of 2% PA with full NPK rate is the best treatment combination that can be adopted as a novel strategy to increase the productivity and quality of tomato fruits. However, further study is required to investigate the molecular basis of PA biostimulatory effect on plants.


Asunto(s)
Solanum lycopersicum , Fertilizantes , Terpenos , Fitoquímicos/farmacología
5.
Front Pharmacol ; 14: 1273786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116085

RESUMEN

Inonotus obliquus (Chaga mushroom) is an inexpensive fungus with a broad range of traditional and medicinal applications. These applications include therapy for breast, cervix, and skin cancers, as well as treating diabetes. However, its benefits are virtually untapped due to a limited understanding of its mycochemical composition and bioactivities. In this article, we explore the ethnobotany, mycochemistry, pharmacology, traditional therapeutic, cosmetic, and prospective agricultural uses. The review establishes that several secondary metabolites, such as steroids, terpenoids, and other compounds exist in chaga. Findings on its bioactivity have demonstrated its ability as an antioxidant, anti-inflammatory, antiviral, and antitumor agent. The study also demonstrates that Chaga powder has a long history of traditional use for medicinal purposes, pipe smoking rituals, and mystical future forecasts. The study further reveals that the applications of Chaga powder can be extended to industries such as pharmaceuticals, food, cosmetics, and agriculture. However numerous publications focused on the pharmaceutical benefits of Chaga with few publications on other applications. Overall, chaga is a promising natural resource with a wide range of potential applications and therefore the diverse array of therapeutic compounds makes it an attractive candidate for various applications such as plant biofertilizers and active ingredients in cosmetics and pharmaceutical products. Thus, further exploration of Chaga's potential benefits in agriculture and other industries could lead to exciting new developments and innovations.

6.
Front Pharmacol ; 14: 1200269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397476

RESUMEN

Cannabis sativa, also known as "hemp" or "weed," is a versatile plant with various uses in medicine, agriculture, food, and cosmetics. This review attempts to evaluate the available literature on the ecology, chemical composition, phytochemistry, pharmacology, traditional uses, industrial uses, and toxicology of Cannabis sativa. So far, 566 chemical compounds have been isolated from Cannabis, including 125 cannabinoids and 198 non-cannabinoids. The psychoactive and physiologically active part of the plant is a cannabinoid, mostly found in the flowers, but also present in smaller amounts in the leaves, stems, and seeds. Of all phytochemicals, terpenes form the largest composition in the plant. Pharmacological evidence reveals that the plants contain cannabinoids which exhibit potential as antioxidants, antibacterial agents, anticancer agents, and anti-inflammatory agents. Furthermore, the compounds in the plants have reported applications in the food and cosmetic industries. Significantly, Cannabis cultivation has a minimal negative impact on the environment in terms of cultivation. Most of the studies focused on the chemical make-up, phytochemistry, and pharmacological effects, but not much is known about the toxic effects. Overall, the Cannabis plant has enormous potential for biological and industrial uses, as well as traditional and other medicinal uses. However, further research is necessary to fully understand and explore the uses and beneficial properties of Cannabis sativa.

7.
Metabolites ; 13(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37367927

RESUMEN

Aluminum (Al) toxicity is a major threat to global crop production in acidic soils, which can be mitigated by natural substances such as pyroligneous acid (PA). However, the effect of PA in regulating plant central carbon metabolism (CCM) under Al stress is unknown. In this study, we investigated the effects of varying PA concentrations (0, 0.25 and 1% PA/ddH2O (v/v)) on intermediate metabolites involved in CCM in tomato (Solanum lycopersicum L., 'Scotia') seedlings under varying Al concentrations (0, 1 and 4 mM AlCl3). A total of 48 differentially expressed metabolites of CCM were identified in the leaves of both control and PA-treated plants under Al stress. Calvin-Benson cycle (CBC) and pentose phosphate pathway (PPP) metabolites were considerably reduced under 4 mM Al stress, irrespective of the PA treatment. Conversely, the PA treatment markedly increased glycolysis and tricarboxylic acid cycle (TCA) metabolites compared to the control. Although glycolysis metabolites in the 0.25% PA-treated plants under Al stress were comparable to the control, the 1% PA-treated plants exhibited the highest accumulation of glycolysis metabolites. Furthermore, all PA treatments increased TCA metabolites under Al stress. Electron transport chain (ETC) metabolites were higher in PA-treated plants alone and under 1 mM, Al but were reduced under a higher Al treatment of 4 mM. Pearson correlation analysis revealed that CBC metabolites had a significantly strong positive (r = 0.99; p < 0.001) association with PPP metabolites. Additionally, glycolysis metabolites showed a significantly moderate positive association (r = 0.76; p < 0.05) with TCA metabolites, while ETC metabolites exhibited no association with any of the determined pathways. The coordinated association between CCM pathway metabolites suggests that PA can stimulate changes in plant metabolism to modulate energy production and biosynthesis of organic acids under Al stress conditions.

8.
Front Plant Sci ; 14: 1141823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251755

RESUMEN

Introduction: Food security is a major challenge to sustainably supply food to meet the demands of the ever-growing global population. Crop loss due to pathogens is a major concern to overcoming this global food security challenge. Soybean root and stem rot caused by Phytophthora sojae results in approximately 20B $US crop loss annually. Phyto-oxylipins are metabolites biosynthesized in the plants by oxidative transformation of polyunsaturated fatty acids through an array of diverging metabolic pathways and play an important role in plant development and defense against pathogen colonization and infection. Lipid mediated plant immunity is a very attractive target for developing long term resistance in many plants' disease pathosystem. However, little is known about the phyto-oxylipin's role in the successful strategies used by tolerant soybean cultivar to mitigate Phytophthora sojae infection. Methods: We used scanning electron microscopy to observe the alterations in root morphology and a targeted lipidomics approach using high resolution accurate mass tandem mass spectrometry to assess phyto-oxylipin anabolism at 48 h, 72 h and 96 h post infection. Results and discussion: We observed the presence of biogenic crystals and reinforced epidermal walls in the tolerant cultivar suggesting a mechanism for disease tolerance when compared with susceptible cultivar. Similarly, the unequivocally unique biomarkers implicated in oxylipin mediated plant immunity [10(E),12(Z)-13S-hydroxy-9(Z),11(E),15(Z)-octadecatrienoic acid, (Z)-12,13-dihydroxyoctadec-9-enoic acid, (9Z,11E)-13-Oxo-9,11-octadecadienoic acid, 15(Z)-9-oxo-octadecatrienoic acid, 10(E),12(E)-9-hydroperoxyoctadeca-10,12-dienoic acid, 12-oxophytodienoic acid and (12Z,15Z)-9, 10-dihydroxyoctadeca-12,15-dienoic acid] generated from intact oxidized lipid precursors were upregulated in tolerant soybean cultivar while downregulated in infected susceptible cultivar relative to non-inoculated controls at 48 h, 72 h and 96 h post infection by Phytophthora sojae, suggesting that these molecules may be a critical component of the defense strategies used in tolerant cultivar against Phytophthora sojae infection. Interestingly, microbial originated oxylipins, 12S-hydroperoxy-5(Z),8(Z),10(E),14(Z)-eicosatetraenoic acid and (4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoic acid were upregulated only in infected susceptible cultivar but downregulated in infected tolerant cultivar. These microbial originated oxylipins are capable of modulating plant immune response to enhance virulence. This study demonstrated novel evidence for phyto-oxylipin metabolism in soybean cultivars during pathogen colonization and infection using the Phytophthora sojae-soybean pathosystem. This evidence may have potential applications in further elucidation and resolution of the role of phyto-oxylipin anabolism in soybean tolerance to Phytophthora sojae colonization and infection.

9.
Plants (Basel) ; 11(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559657

RESUMEN

Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard (Beta vulgaris var. cicla), arugula (Eruca vesicaria ssp. sativa), and pak choi (Brassica rapa var. chinensis). The growing media were T1.1 (30% vermicast + 30% sawdust + 10% perlite + 30% PittMoss (PM)); T2.1 (30% vermicast + 20% sawdust + 20% perlite + 30% PM); PM was replaced with mushroom compost in the respective media to form T1.2 and T2.2. Positive control (PC) was Pro-mix BX™ potting medium alone. Root length was the highest in T1.1 while the shoot length, root volume, and yield were highest in T2.2. Chlorophyll and carotenoid contents of Swiss chard grown in T1.1 was the highest, followed by T2.2 and T1.1. Pak choi and kale had the highest sugar and protein contents in T2.2, respectively. Consistently, total phenolics and flavonoids of the microgreens were increased by 1.5-fold in T1.1 and T2.2 compared to PC. Antioxidant enzyme activities were increased in all the four microgreens grown in T1.1 and T2.2. Overall, T2.2 was the most effective growing media to increase microgreens plant growth, yield, and biochemical composition.

10.
Front Nutr ; 9: 899401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118752

RESUMEN

Breast milk is the ideal source of nutrients for infants in early life. Lipids represent 2-5% of the total breast milk composition and are a major energy source providing 50% of an infant's energy intake. Functional lipids are an emerging class of lipids in breast milk mediating several different biological functions, health, and developmental outcome. Lipidomics is an emerging field that studies the structure and function of lipidome. It provides the ability to identify new signaling molecules, mechanisms underlying physiological activities, and possible biomarkers for early diagnosis and prognosis of diseases, thus laying the foundation for individualized, targeted, and precise nutritional management strategies. This emerging technique can be useful to study the major role of functional lipids in breast milk in several dimensions. Functional lipids are consumed with daily food intake; however, they have physiological benefits reported to reduce the risk of disease. Functional lipids are a new area of interest in lipidomics, but very little is known of the functional lipidome in human breast milk. In this review, we focus on the role of lipidomics in assessing functional lipid composition in breast milk and how lipid bioinformatics, a newly emerging branch in this field, can help to determine the mechanisms by which breast milk affects newborn health.

11.
Sci Rep ; 12(1): 14355, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999262

RESUMEN

Communication between gut microbiota and the brain is an enigma. Alterations in the gut microbial community affects enteric metabolite levels, such as short chain fatty acids (SCFAs). SCFAs have been proposed as a possible mechanism through which the gut microbiome modulate brain health and function. This study analyzed for the first time the effects of SCFAs at levels reported in human systemic circulation on SH-SY5Y human neuronal cell energy metabolism, viability, survival, and the brain lipidome. Cell and rat brain lipidomics was done using high resolution mass spectrometry (HRMS). Neuronal cells viability, survival and energy metabolism were analyzed via flow cytometer, immunofluorescence, and SeahorseXF platform. Lipidomics analysis demonstrated that SCFAs significantly remodeled the brain lipidome in vivo and in vitro. The most notable remodulation was observed in the metabolism of phosphatidylethanolamine plasmalogens, and mitochondrial lipids carnitine and cardiolipin. Increased mitochondrial mass, fragmentation, and hyperfusion occurred concomitant with the altered mitochondrial lipid metabolism resulting in decreased neuronal cell respiration, adenosine triphosphate (ATP) production, and increased cell death. This suggests SCFAs at levels observed in human systemic circulation can adversely alter the brain lipidome and neuronal cell function potentially negatively impacting brain health outcomes.


Asunto(s)
Microbioma Gastrointestinal , Neuroblastoma , Animales , Apoptosis , Ácidos Grasos Volátiles/metabolismo , Humanos , Metabolismo de los Lípidos , Ratas
12.
Plants (Basel) ; 11(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807602

RESUMEN

Pyroligneous acid (PA) is a reddish-brown liquid obtained through the condensation of smoke formed during biochar production. PA contains bioactive compounds that can be utilized in agriculture to improve plant productivity and quality of edible parts. In this study, we investigated the biostimulatory effect of varying concentrations of PA (i.e., 0%, 0.25%, 0.5%, 1%, and 2% PA/ddH2O (v/v)) application on tomato (Solanum lycopersicum 'Scotia') plant growth and fruit quality under greenhouse conditions. Plants treated with 0.25% PA exhibited a significantly (p < 0.001) higher sub-stomatal CO2 concentration and a comparable leaf transpiration rate and stomatal conductance. The total number of fruits was significantly (p < 0.005) increased by approximately 65.6% and 34.4% following the application of 0.5% and 0.25% PA, respectively, compared to the control. The 0.5% PA enhanced the total weight of fruits by approximately 25.5%, while the 0.25% PA increased the elemental composition of the fruits. However, the highest PA concentration of 2% significantly (p > 0.05) reduced plant growth and yield, but significantly (p < 0.001) enhanced tomato fruit juice Brix, electrical conductivity, total dissolved solids, and titratable acidity. Additionally, total phenolic and flavonoid contents were significantly (p < 0.001) increased by the 2% PA. However, the highest carotenoid content was obtained with the 0.5% and 1% PA treatments. Additionally, PA treatment of the tomato plants resulted in a significantly (p < 0.001) high total ascorbate content, but reduced fruit peroxidase activity compared to the control. These indicate that PA can potentially be used as a biostimulant for a higher yield and nutritional quality of tomato.

13.
Clin Ther ; 44(7): 998-1009, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35909001

RESUMEN

PURPOSE: Ethanolamine-containing plasmalogens (pPEs) are a unique class of breastmilk (BM) glycerophospholipids containing a vinyl-ether at the sn-1 and a polyunsaturated fatty acid (PUFA) at the sn-2 position of the glycerol moiety. pPEs are present in the milk fat globule membrane, accumulate in the infant brain, and have been implicated in infant development. The study objectives were to: (1) describe the composition of BM pPEs and the variation in monomers at both the sn-1 and sn-2 positions; and (2) quantify the associations between BM pPEs and maternal predictors (body mass index, race, dietary fatty acid intake, gestational age at birth, and days' postpartum). Secondary objectives were to explore the relationship between BM pPEs and infant anthropometrics and neurodevelopment. METHODS: This was a secondary analysis of 39 mother-infant dyads in the control group of a randomized controlled trial of vitamin D supplementation during lactation. BM samples and data regarding maternal diet, infant anthropometrics (weight, fat mass index, and fat-free mass index by dual-energy X-ray absorptiometry), and infant development were collected at 1 month (visit 1 [V1], n = 37) and 4 months' (visit 4 [V4], n = 39) postpartum. BM pPEs were extracted and quantified by using ultra-HPLC/high-resolution MS/MS at V1 and V4 and expressed as percent mass of total phospholipids. Associations of pPEs with infant development and anthropometrics were modeled using linear regression. FINDINGS: C(18:0) vinyl ethers and C(18:2) polyunsaturated fatty acid-enriched pPEs predominate in BM. Specific pPEs, as a proportion of total phospholipids, decreased between V1 and V4. Higher maternal body mass index was associated with lower BM pPEs in unadjusted models, but this association was attenuated after adjustment for race, diet, and days' postpartum. Maternal fatty acid intake, gestational age, and days' postpartum were not associated with BM pPEs. Total pPEs at V1 were negatively associated with infant fat mass index and positively associated with fat-free mass index at V1 and V4. BM pPE concentrations were not correlated with neurodevelopmental outcomes. IMPLICATIONS: BM pPEs decrease over lactation and are associated with lower infant adiposity and higher lean mass. CLINICALTRIALS: gov identifier: NCT00412074.


Asunto(s)
Leche Humana , Síndrome de Nijmegen , Composición Corporal , Índice de Masa Corporal , Niño , Ácidos Grasos Insaturados , Femenino , Humanos , Lactante , Recién Nacido , Plasmalógenos , Espectrometría de Masas en Tándem
14.
Biomedicines ; 10(5)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35625866

RESUMEN

Maternal body mass index is associated with breast milk (BM) fatty acid composition. This study investigated the effects of BM omega (n)-6:n-3 polyunsaturated fatty acids (PUFAs) from non-obese women and women with obesity on the process of adipogenesis in 3T3-L1 preadipocytes. BM samples were collected from non-obese women (BMNO) and women with obesity (BMO) at one month postpartum. The fatty acid composition was measured, and BMNO and BMO groups with the lowest (Q1) and highest (Q4) quartiles of n-6:n-3 PUFA ratios were identified. 3T3-L1 preadipocytes were differentiated in the presence or absence of BM. Lipid accumulation and the expression of genes involved in lipogenesis and lipolysis were measured. Treatment with BMNO containing high (vs. low) n-6:n-3 PUFA ratios significantly increased the mRNA expression of lipogenic genes (acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase); however, there was no effect when cells were treated with BMO (with either low or high n-6:n-3 PUFA ratios). Treatment with BMO (high n-6:n-3 PUFA ratio) caused larger lipid droplets. Our findings demonstrated that BMNO with a high n-6:n-3 PUFA ratio was associated with a higher expression of lipogenic genes, while BMO with a high n-6:n-3 PUFA ratio showed larger lipid droplets, suggesting adipocyte dysfunction. These findings may have implications in the BM-mediated programming of childhood obesity.

15.
Plants (Basel) ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567218

RESUMEN

Chilling stress is one of the major abiotic stresses which hinder seedling emergence and growth. Herein, we investigated the effects of chilling/low temperature stress on the morphological, physiological, and biochemical attributes of two silage corn genotypes during the seedling establishment phase. The experiment was conducted in a growth chamber, and silage corn seedlings of Yukon-R and A4177G-RIB were grown at optimum temperature up to V3 stage and then subjected to five temperature regimes (25 °C as control, 20 °C, 15 °C, 10 °C, and 5 °C) for 5 days. After the temperature treatment, the morphological, physiological, and biochemical parameters were recorded. Results indicated that temperatures of 15 °C and lower significantly affected seedling growth, photosynthesis system, reactive oxygen species (ROS) accumulation, and antioxidant enzyme activities. Changes in seedlings' growth parameters were in the order of 25 °C > 20 °C > 15 °C > 10 °C > 5 °C, irrespective of genotypes. The chlorophyll content, photosynthetic rate, and maximal photochemical efficiency of PS-II (Fv/Fm) were drastically decreased under chilling conditions. Moreover, chilling stress induced accumulation of hydrogen peroxide (H2O2)and malonaldehyde (MDA) contents. Increased proline content and enzymatic antioxidants, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxide (APX), were found to alleviate oxidative damage under chilling stress. However, the genotype of Yukon-R exhibited better adaption to chilling stress than A4177G3-RIB. Yukon-R showed significantly higher proline content and enzymatic antioxidant activities than A4177G3-RIB under severe chilling conditions (temperature ≤ 10 °C). Similarly, Yukon-R expressed low temperature-induced ROS accumulation. Furthermore, the interaction effects were found between temperature treatment and genotype on the ROS accumulation, proline content and antioxidant enzyme activities. In summary, the present study indicated that Yukon-R has shown better adaptation and resilience against chilling temperature stress, and therefore could be considered a potential candidate genotype to be grown in the boreal climate.

16.
Lipids Health Dis ; 21(1): 42, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538477

RESUMEN

BACKGROUND: Monoacetyldiglycerides (MAcDG), are acetylated triglycerides (TG) and an emerging class of bioactive or functional lipid with promising nutritional, medical, and industrial applications. A major challenge exists when analyzing MAcDG from other subclasses of TG in biological matrices, limiting knowledge on their applications and metabolism. METHODS: Herein a multimodal analytical method for resolution, identification, and quantitation of MAcDG in biological samples was demonstrated based on thin layer chromatography-flame ionization detection complimentary with C30-reversed phase liquid chromatography-high resolution accurate mass tandem mass spectrometry. This method was then applied to determine the MAcDG molecular species composition and quantity in E. solidaginis larvae. The statistical method for analysis of TG subclass composition and molecular species composition of E. solidaginis larvae was one-way analysis of variance (ANOVA). RESULTS: The findings suggest that the proposed analytical method could simultaneously provide a fast, accurate, sensitive, high throughput analysis of MAcDG from other TG subclasses, including the fatty acids, isomers, and molecular species composition. CONCLUSION: This method would allow for MAcDG to be included during routine lipidomics analysis of biological samples and will have broad interests and applications in the scientific community in areas such as nutrition, climate change, medicine and biofuel innovations.


Asunto(s)
Lipidómica , Lípidos , Cromatografía de Fase Inversa , Medios de Cultivo , Lípidos/química , Espectrometría de Masas en Tándem , Triglicéridos
17.
J Environ Manage ; 315: 115126, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35526393

RESUMEN

Moss plays an important role in boreal forest ecosystems as an understory bryophyte species. Clearcut harvesting is a common boreal forest regeneration method that can expose understory vegetation to abiotic stressors impeding their recovery following post-harvest conditions. Very little is known concerning how moss remodel their chloroplast lipidome to enhance photosynthetic performance for successful acclimation to light and water stress during boreal forest regeneration following clearcut harvesting. The chloroplast lipidome and photosynthetic performance of Sphagnum sp. and three feathermoss species (Pleurozium schreberi, Hylocomium splendens, and Ptilium crista-castrensis) from a boreal black spruce (Picea mariana) forest were assessed using liquid chromatography-mass spectrometry (LC-MS), photospectrometry, and light response curves. We observed an overall increase in monogalactosyldiacylglycerol (MGDG) and sulfoquinovosyldiacylglycerol (SQDG) and decrease in digalactosyldiacylglycerol (DGDG) and phosphatidylglycerol (PG). In addition, unsaturation of the chloroplast lipidome occurred concomitant with photoprotection by carotenoid pigments to enhance the efficiency and photosynthetic capacity in moss exposed to light and water stress following clearcut harvesting. This appears to be a successful acclimation strategy used by moss to circumvent light stress during boreal forest regeneration following clearcut harvesting. These findings could be of significance in the development of boreal forest management strategies following resource harvesting.


Asunto(s)
Briófitas , Picea , Aclimatación , Cloroplastos , Deshidratación , Ecosistema , Lipidómica , Picea/fisiología , Taiga , Árboles
18.
J Adv Res ; 37: 75-89, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35499051

RESUMEN

Introduction: Honey bees (Apis mellifera) play key roles in food production performing complex behaviors, like self-grooming to remove parasites. However, the lipids of their central nervous system have not been examined, even though they likely play a crucial role in the performance of cognitive process to perform intricate behaviors. Lipidomics has greatly advanced our understanding of neuropathologies in mammals and could provide the same for honey bees. Objectives: The objectives of this study were to characterize the brain lipidome of adult honey bees and to assess the effect of clothianidin (a neurotoxic insecticide) on the brain lipid composition, gene expression, and performance of self-grooming behavior under controlled conditions (cage experiments). Methods: After seven days of exposure to oral sublethal doses of clothianidin, the bees were assessed for self-grooming behavior; their brains were dissected to analyze the lipidome using an untargeted lipidomics approach and to perform a high throughput RNAseq analysis. Results: Compared to all other organisms, healthy bee brain lipidomes contain unusually high levels of alkyl-ether linked (plasmanyl) phospholipids (51.42%) and low levels of plasmalogens (plasmenyl phospholipids; 3.46%). This could make it more susceptible to the effects of toxins in the environment. A positive correlation between CL 18:3/18:1/14:0/22:6, TG 6:0/11:2/18:1, LPE 18:0e and intense self-grooming was found. Sublethal doses of a neonicotinoid altered PC 20:3e/15:0, PC 16:0/18:3, PA 18:0/24:1, and TG 18:1/18:1/18/1 levels, and affected gene expression linked to GPI-anchor biosynthesis pathway and energy metabolism that may be partially responsible for the altered lipid composition. Conclusion: This study showed that lipidomics can reveal honey bee neuropathologies associated with reduced grooming behavior due to sublethal neonicotinoid exposure. The ease of use, unusual brain lipidome as well as characterized behaviors that are affected by the environment make honey bees a promising model organism for studying the neurolipidome and associations with neurobehavioral disorders.


Asunto(s)
Encéfalo , Lipidómica , Animales , Abejas , Aseo Animal/fisiología , Mamíferos , Neonicotinoides/toxicidad , Fosfolípidos
19.
Radiol Cardiothorac Imaging ; 4(2): e210259, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35506134

RESUMEN

Primary mediastinal liposarcoma is a rare, fat-containing malignant lesion that can manifest incidentally with varied imaging appearances. The size and location within the mediastinum can vary among patients. Here, the authors describe the clinical presentation, radiographic characteristics, management, and prognosis in a series of six patients with primary mediastinal liposarcoma. The following case series suggests that even simple-appearing fatty intrathoracic lesions may lead to the development of malignant imaging features. Keywords: Conventional Radiography, CT, MR Imaging, PET/CT, Soft Tissues/Skin, Thorax, Mediastinum ©RSNA, 2022.

20.
J Environ Manage ; 301: 113811, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34624579

RESUMEN

BACKGROUND AND OBJECTIVES: Organic waste management in environmentally sustainable way is important not only to reduce the negative impacts on ecosystems but also valorizing the waste resources. Herein we evaluated the potential of wood ash (WA) and paper sludge (PS) wastes from a pulp and paper mill as potting media and their effects on the physicochemical properties of podzolic soil. METHODS: WA, PS and biochar (BC) was mixed in different combinations with a sandy loam podzolic soil. Potting media treatments included: T1-soil (negative control); T2-PromixTM (positive control); T3-50%soil+50%WA; T4-75%soil+25%WA; T5-50%soil+50%PS; T6-75%soil+25%PS; T7-75%soil+25%BC; T8-25%soil+50%WA+25%BC; T9-50%soil+25%WA+25%BC; T10-25%soil+50%PS+25%BC; T11-50%soil+25%PS+25%BC, T12- 25%soil+25%WA+25%PS+25%BC and replicated three times. RESULTS: Potting media treatments expressed significant (p < 0.00) effects on pH, bulk density, total porosity, field capacity, plant available water (PAW) and water retention curves. Potting media amended with WA showed high pH range (8-12) while PS amendments exhibited pH in range where most plant nutrients are available (6.5-7.5). Results depicted significantly lower bulk density, and increased total porosity and water holding capacity of potting media amended with WA and PS. BC addition further enhanced the water retention properties compared to combinations without BC. T6, T10 and T11 produced higher amounts of PAW with desired pH compared to T1 and T2. CONCLUSION: WA, PS and BC showed high potential for developing podzolic soil-based potting media, but their effects on plant growth and elemental uptake need to be investigated.


Asunto(s)
Contaminantes del Suelo , Suelo , Carbón Orgánico , Ecosistema , Aguas del Alcantarillado , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...