Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 16(3): 1419-1451, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33514946

RESUMEN

Oligomerization of membrane proteins has received intense research interest because of their importance in cellular signaling and the large pharmacological and clinical potential this offers. Fluorescence imaging methods are emerging as a valid tool to quantify membrane protein oligomerization at high spatial and temporal resolution. Here, we provide a detailed protocol for an image-based method to determine the number and oligomerization state of fluorescently labeled prototypical G-protein-coupled receptors (GPCRs) on the basis of small out-of-equilibrium fluctuations in fluorescence (i.e., molecular brightness) in single cells. The protocol provides a step-by-step procedure that includes instructions for (i) a flexible labeling strategy for the protein of interest (using fluorescent proteins, small self-labeling tags or bio-orthogonal labeling) and the appropriate controls, (ii) performing temporal and spatial brightness image acquisition on a confocal microscope and (iii) analyzing and interpreting the data, excluding clusters and intensity hot-spots commonly observed in receptor distributions. Although specifically tailored for GPCRs, this protocol can be applied to diverse classes of membrane proteins of interest. The complete protocol can be implemented in 1 month.


Asunto(s)
Imagen Óptica/métodos , Receptores Acoplados a Proteínas G/metabolismo , Análisis de la Célula Individual/métodos , Fluorescencia , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Multimerización de Proteína/fisiología , Transducción de Señal/fisiología , Espectrometría de Fluorescencia/métodos
2.
Tissue Eng ; 11(3-4): 645-58, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15869441

RESUMEN

Reconstruction of craniofacial defects presents a substantial biomedical burden, and requires complex surgery. Interestingly, children after age 2 years and adults are unable to heal large skull defects. This nonhealing paradigm provides an excellent model system for craniofacial skeletal tissueengineering strategies. Previous studies have documented the in vivo osteogenic potential of adipose-derived stromal (ADS) cells and bone marrow-derived stromal (BMS) cells. This study investigates the ability to accelerate in vivo osteogenesis on ex vivo recombinant human bone morphogenetic protein 2 (BMP-2) and retinoic acid stimulation. Mouse osteoblasts, ADS cells, and BMS cells were seeded onto apatite-coated PLGA scaffolds, stimulated with rhBMP-2 and retinoic acid ex vivo for 4 weeks, and subsequently implanted into critically sized (4 mm) calvarial defects. Samples were harvested after 2, 4, 8, and 12 weeks. Areas of complete bony bridging were noted as early as 2 weeks in vivo; however, osteoclasts were attracted to the scaffold as identified by calcitonin receptor staining and tartrate-resistant acid phosphatase activity staining. Although the optimal method of in vitro osteogenic priming for mesenchymal cells remains unknown, these results provide evidence that BMP-2 and retinoic acid stimulation of multipotent cells ex vivo can subsequently induce significant quantities of bone formation within a short time period in vivo.


Asunto(s)
Proteínas Morfogenéticas Óseas/administración & dosificación , Remodelación Ósea/efectos de los fármacos , Anomalías Craneofaciales/patología , Anomalías Craneofaciales/terapia , Células Madre Multipotentes/trasplante , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Factor de Crecimiento Transformador beta/administración & dosificación , Tretinoina/administración & dosificación , Animales , Proteína Morfogenética Ósea 2 , Supervivencia Celular/efectos de los fármacos , Masculino , Ratones , Células Madre Multipotentes/patología , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteoclastos/patología , Resultado del Tratamiento
3.
Nat Biotechnol ; 22(5): 560-7, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15077117

RESUMEN

In adults and children over two years of age, large cranial defects do not reossify successfully, posing a substantial biomedical burden. The osteogenic potential of bone marrow stromal (BMS) cells has been documented. This study investigates the in vivo osteogenic capability of adipose-derived adult stromal (ADAS) cells, BMS cells, calvarial-derived osteoblasts and dura mater cells to heal critical-size mouse calvarial defects. Implanted, apatite-coated, PLGA scaffolds seeded with ADAS or BMS cells produced significant intramembranous bone formation by 2 weeks and areas of complete bony bridging by 12 weeks as shown by X-ray analysis, histology and live micromolecular imaging. The contribution of implanted cells to new bone formation was 84-99% by chromosomal detection. These data show that ADAS cells heal critical-size skeletal defects without genetic manipulation or the addition of exogenous growth factors.


Asunto(s)
Tejido Adiposo/citología , Cráneo/citología , Células del Estroma/citología , Animales , Células de la Médula Ósea/citología , Ácido Láctico , Ratones , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...