Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(2): 289-295, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38054249

RESUMEN

The photochemical oxidations of acenes can cause challenges with their optoelectronic applications, such as singlet fission and organic transistors. At the same time, these reactions form the basis for many luminescent sensing schemes for 1O2. While diethynyl substitution is arguably the most widely adopted of the various substitution strategies to control oxidation and also improve solubility and processability of long acenes, the extent to which differences between the alkyne groups can influence key properties of long acenes remains largely unknown. This report therefore describes the effects of various arenes and heteroarenes on the electronic structures, optical properites, and reactivity with singlet oxygen for eight 5,12-di(arylethynyl)tetracenes. The fluorescence spectra of these tetracenes span approximately 100 nm, while their observed rate constants for reaction with singlet oxygen correlates strongly with the HOMO level, spanning one order of magnitude. They are also amenable to fluorescent materials that respond ratiometrically to singlet oxygen. Therefore, electronic effects of groups directly conjugated to ethynylacenes offer a useful chemical space for rational acene design.

2.
Photochem Photobiol ; 98(1): 272-274, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34812514

RESUMEN

Progress in photodynamic therapy (PDT) relies on the design and synthesis of photosensitizers that can efficiently sensitize singlet oxygen using visible light irradiation while displaying limited dark toxicity. Here, we highlight the paper by Linker and coworkers published in this issue of Photochemistry and Photobiology, which evaluates the effect of the regiochemistry of pyridinium rings in three isomeric pyridinium alkynylanthracenes on their performance as photosensitizers for PDT in HeLa cells.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Células HeLa , Humanos , Fotobiología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete
3.
ACS Appl Mater Interfaces ; 13(11): 13658-13665, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33705104

RESUMEN

Fluorophores that respond to external stimuli on demand have numerous applications in imaging and chemical or biological sensing. In this paper, we describe conjugated polymer nanoparticles (CPNs) that comprise a donor polymer matrix and a red-fluorescent, singlet oxygen-reactive heteroacene dopant (DE-TMT) that display a ratiometric response upon photo-oxidation. This ratiometric response can be tuned by the level of doping of DE-TMT, the identity of the conjugated polymer matrix used, and the blending of two conjugated polymers together to access red-shifted emission wavelengths. We followed a rational design process that combined (i) fundamental understanding of the influence of the chemical structure on luminescence spectra and efficiencies, energy transfer efficiencies, and reactivity and (ii) systematically determining how blending multiple chromophores in nanoparticles influences energy transfer efficiencies and the speed of optical responses to irradiation. Our approach of refining the compositions of these nanoparticles has yielded materials that combine many desirable characteristics for analytical applications-utility in aqueous environments, high quantum yield, emission of red light, and ratiometric luminescent responses. We anticipate that the type of approach described herein can be of use to others in designing CPNs for luminescence applications.

4.
Org Biomol Chem ; 18(45): 9191-9209, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33156305

RESUMEN

The spectroscopic, electronic, and geometrical properties of acenes have enabled their broad applicability in organic optoelectronics. Beyond these physical characteristics of acenes, acenes also offer characteristic and predictable reaction chemistry, especially their behavior as dienes in cycloaddition reactions. Although these cycloaddition reactions, especially those with singlet oxygen (1O2) as the dienophile, are detrimental for organic electronics, this reactivity has led to several different applications such as sensing of 1O2, the release of cytotoxic reactive oxygen species (ROS), and stimuli-responsive materials for drug delivery. The rational design of acenes in these chemically-responsive applications beyond organic optoelectronics requires an understanding of how chemical structure influences both the physical properties, such as quantum yield of emission, as well as the reactivity of acenes and their cycloadducts. Therefore, the objective of this review is to summarize how cycloaddition reactions of acenes have expanded their applications in different areas of materials chemistry, and in doing so inspire and inform the rational design of acene-based materials with applications beyond organic electronics.

5.
J Org Chem ; 85(19): 12731-12739, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32893633

RESUMEN

Although long acenes remain a key class of π-conjugated molecules for numerous applications, photoinduced oxidation upon exposure of the acene to light, often through sensitization of 1O2, is an important reaction requiring mitigation for most applications. In response to this ongoing challenge, this paper presents a series of four new diarylethynyl-substituted long acenes-three tetracenes and one anthradithiophene-in which the arylene pendants are either benzene, naphthalene, or anthracene. UV/vis and fluorescence spectroscopy reveals that the anthracene-substituted derivatives fluoresce poorly (Φ < 0.01). Although all four long acenes react with 1O2 at expected rates when an external photosensitizer is included and show the expected changes in fluorescence to accompany these reactions, the anthracene-substituted derivatives resist direct photoinduced oxidation. Through a combination of mechanistic experiments, we conclude that rapid nonradiative decay of the anthracene-substituted derivatives, perhaps because of inter-arene torsions that emerge in theoretical geometry optimizations, makes these compounds poor photosensitizers for 1O2 or other reactive oxygen species. This discovery opens new design possibilities for extended acene structures with improved photochemical stability.

6.
Chem Commun (Camb) ; 56(50): 6854-6857, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32432580

RESUMEN

Neat solids that phosphoresce under ambient conditions are rare due to aggregation-caused quenching. This communication describes a platinum acetylide (PtPE) that phosphoresces as a solid due to programmed aromatic stacking interactions of pendant groups that prevent intermolecular aggregation.

7.
Langmuir ; 35(43): 13791-13804, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31487186

RESUMEN

Layer-by-layer (LbL) self-assembly of polymer coatings is a bottom-up fabrication technique with broad applicability across a wide range of materials and applications that require control over interfacial properties. While most LbL coatings are chemically uniform in directions both tangent and perpendicular to their substrate, control over the properties of surface coatings as a function of space can enhance their function. To contribute to this rapidly advancing field, our group has focused on the top-down spatiotemporal control possible with photochemically reactive LbL coatings, harnessed through charge-shifting polyelectrolytes enabled by photocleavable ester pendants. The photolysis of the photocleavable esters degrades LbL films containing these polyelectrolytes. The chemical structures of the photocleavable groups dictate the wavelengths responsible for disrupting these coatings, ranging from ultraviolet to near-infrared in our work. In addition, spatially segregating reactive groups into "compartments" within LbL films has enabled us to fabricate reactive free-standing polymer films and multiheight photopatterned coatings. Overall, by combining bottom-up and top-down approaches, photoreactive LbL films enable precise control over the interfacial properties of polymer and composite coatings.

8.
Chemistry ; 25(44): 10400-10407, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31087794

RESUMEN

Photochemical oxidation of acenes can benefit or impede their function, depending on the application. Although acenes with alkoxy substituents on reactive sites are important for applications as diverse as drug delivery and organic optoelectronics, the influence of chemical structure on their photochemical oxidation remains unknown. This paper therefore describes the synthesis, spectroscopic properties, and reactivity with singlet oxygen (1 O2 ) of a series of dialkoxyacenes that vary in the number and types of fused rings in the (hetero)acene cores. Reductive alkylation of quinone precursors yielded target dialkoxyacenes with fused backbones ranging from benzodithiophene to tetracenothiophene. Trends of their experimental spectroscopic characteristics were consistent with time-dependent density functional theory (TD-DFT) calculations. NMR studies show that photochemically generated 1 O2 oxidizes all but one of these acenes to the corresponding endoperoxides in organic solvent. The rates of these oxidations correlate with the number and types of fused arenes, with longer dialkoxyacenes generally oxidizing faster than shorter derivatives. Finally, irradiation of these acenes in acidic, oxidizing environments cleaves the ether bonds. This work impacts those working in organic optoelectronics, as well as those interested in harnessing photogenerated reactive oxygen species in functional materials.

9.
J Mater Chem C Mater ; 7(27): 8316-8324, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33133604

RESUMEN

Understanding and manipulating crystal polymorphism can provide novel strategies for materials discovery in organic optoelectronics. In this paper, a series of seven ester-terminated three-ring phenylene ethynylenes (PEs) exhibit structure-dependent polymorphism wherein alkyl chain length modulates the propensity to form violet or green fluorescent solid phases, as well as tunable thermal and mechanofluorochromic (MFC) transitions. These compounds harness "soft" non-covalent control to achieve polymorphism: the electronic substituent effect of the ester groups weakens the fluoroarene-arene (ArF-ArH) interactions that typically direct crystal packing of this class of compounds, increasing competitiveness of other interactions. Small structural modifications tip this balance and shift the prevalence of violet- or green-emitting polymorphs. Compounds with short alkyl chain lengths show both violet and various green fluorescent polymorphs, while the violet fluorescent form dominates with alkyl lengths longer than butyl. Further, thermally induced green-to-violet fluorescent crystal-to-crystal transitions occur for single crystals of CO2-1 and CO2-3. Finally, the PEs show reversible violet-to-green mechanofluorochromism (MFC), with temperature required for reversion of this MFC decreasing with alkyl chain length. We therefore present this design of directional but weak interactions as a strategy to access polymorphs and tunable stimuli-responsive behavior in solids.

10.
ACS Appl Mater Interfaces ; 11(3): 2814-2820, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30582802

RESUMEN

We report the synthesis of amphiphilic polymers featuring lipophilic stearyl chains and hydrophilic poly(ethylene glycol) polymers that are connected through singlet oxygen-cleavable alkoxyanthracene linkers. These amphiphilic polymers assembled in water to form micelles with diameters of ∼20 nm. Reaction of the alkoxyanthracene linkers with light and O2 cleaved the ether C-O bonds, resulting in formation of the corresponding 9,10-anthraquinone derivatives and concomitant disruption of the micelles. These micelles were loaded with the chemotherapeutic agent doxorubicin, which was efficiently released upon photo-oxidation. The drug-loaded reactive micelles were effective at killing cancer cells in vitro upon irradiation at 365 nm, functioning through both doxorubicin release and photodynamic mechanisms.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Doxorrubicina/química , Portadores de Fármacos/química , Células HeLa , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Micelas , Neoplasias/patología , Polímeros/química
11.
Chemistry ; 24(64): 16987-16991, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30281848

RESUMEN

Engineering the properties of conjugated materials in the solid state is an unsolved, ongoing challenge important to fundamental understanding of how non-covalent interactions dictate packing and key properties, as well as the development of technologies based in organic optoelectronics. The most common design paradigm of such materials divide them into a "main chain" with extended conjugation, the chemical structure of which determines optoelectronic properties, and "side chains" not conjugated to the backbone, which provide solubility when they are long alkyl chains. This paper describes comparisons between phenylene-ethynylene molecules in which slight changes to the structure of "side chains"-swapping hydrogen and fluorine atomic position on an aromatic ring-results in unexpectedly large changes in the solid-state optical properties. In a pair of anisyl-terminated three-ring phenylene-ethynylenes, switching the side chain arenes of benzyl esters from 2,4,6-trifluoro to 2,3,6-trifluoro results in a shift in fluorescence emission spectra of over 100 nm, as well as the opposite direction of force-induced shifting of emission. Through a combination X-ray crystal structures, electronic structure calculations, and comparisons with other derivatives, we describe how the 2,4,6-trifluorinated side chains yield cofacial fluoroarene-arene stacking interactions that twist the PE backbone out of conjugation, while the 2,3,6-trifluoro side chains do not stack, instead yielding more coplanar PE backbones that form intermolecular aggregates. Overall, this work demonstrates how slight modifications to parts of conjugated materials normally considered ancillary to optoelectronic properties can determine their solid-state properties, epitomizing the challenge of rational design but at the same time offering opportunities for materials discovery and improved understanding of non-covalent interactions.

12.
Chem Sci ; 9(24): 5415-5426, 2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-30009013

RESUMEN

Seven three-ring phenylene-ethynylene (PE) structural analogs, differing only in the lengths of alkyl chains on terminal aniline substituents, show 50-62 nm bathochromic shifts in emission maxima in response to mechanical force (mechanofluorochromism, MC). These shifts are fully reversible with heat or solvent fuming. Shearing of these solids yields a transition from green-emitting crystalline phases to orange-emitting amorphous phases as established by differential scanning calorimetry and X-ray diffraction. Molecules with shorter alkyl chain lengths required higher temperatures to recover the hypsochromically shifted crystalline phases after grinding, while the recovery with chain lengths longer than butyl occurred at room temperature. In addition to this structure-dependent thermochromism, these compounds retain their MC properties in polymer hosts to various extents. The crystalline phases of these materials have PE chromophores that are twisted due to non-covalent perfluoroarene-arene (ArF-ArH) interactions involving perfluorophenyl pendants and the terminal rings of the PE chromophore, resulting in interrupted conjugation and an absence of chromophore aggregation. The MC behavior of an analog without the perfluoroarene rings is severely attenuated. This work demonstrates the general utility of twisted PEs as stimuli-responsive moieties and reveals clear structure-property relationships regarding the effects of alkyl chain length on these materials.

13.
Langmuir ; 33(41): 10877-10885, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28967754

RESUMEN

This paper describes polyelectrolyte multilayer films prepared by the layer-by-layer (LbL) technique capable of undergoing dissolution upon exposure to either ultraviolet or near-infrared light. Film dissolution is driven by photochemical deprotection of a random methacrylic copolymer with two types of side chains: (i) 6-bromo-7-hydroxycoumarinyl esters, photocleavable groups that are known to have substantial two-photon photolysis cross sections, and (ii) cationic residues from the commercially available monomer N,N-dimethylaminoethyl methacrylate (DMAEMA). In addition, the dependence of stability of both unirradiated and irradiated films on pH provides experimental evidence for the necessity of disrupting both ion-pairing and hydrophobic interactions between polyelectrolytes to realize film dissolution. This work therefore provides both new fundamental insight regarding photolabile LbL films and expands their applied capabilities to nonlinear photochemical processes.


Asunto(s)
Umbeliferonas/química , Rayos Infrarrojos , Fotones , Polímeros
14.
Angew Chem Int Ed Engl ; 56(48): 15196-15198, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29024377

RESUMEN

May the force be with you: Xia, Burns, Martinez, and co-workers harnessed the ring strain of ladderenes to enable both their polymerization and mechanochemical unzipping to yield semiconducting polyacetylene-based block copolymers. These materials have promise as functional polymers for applications such as detection of physical stress.

15.
Nat Commun ; 8: 16057, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28675166

RESUMEN

Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted a priori.

16.
ACS Appl Mater Interfaces ; 9(18): 15768-15775, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28409621

RESUMEN

Although fluorescent probes for the detection of singlet oxygen (1O2) have been an active area of research, most such probes rely upon change in intensity of a single band. Herein, we report a FRET-based, 1O2-sensitive aqueous suspension of conjugated polymer nanoparticles (CPNs) comprising the energy-donating host polymer poly[{9,9-dioctyl-2,7-divinylene-fluorenylene}-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] doped with an energy acceptor, the 1O2-sensitive thienoacene 5,12-bis(4-methoxyphenyl)-2-butyltetraceno[2,3-b]thiophene. Using a phthalocyanine-based sensitizer, IRDye 700DX, our probe shows a rapid, ratiometric response to photosensitized 1O2 in water in both cuvettes and 96-well plates that compares favorably to the commercial 1O2-sensitive dye, singlet oxygen sensor green. The response to irradiation of even nanomolar concentrations of photosensitizer demonstrates the sensitivity of our ratiometric probe.

17.
ACS Appl Mater Interfaces ; 9(15): 13619-13631, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28345857

RESUMEN

In this study, we present a novel self-cleaning, photoresponsive membrane that is capable of removing predeposited foulant layers upon changes in surface morphology in response to UV or visible light irradiation while maintaining stable pore size and water permeance. These membranes were prepared by creating thin film composite (TFC) membranes by coating a porous support membrane with a thin layer of novel comb-shaped graft copolymers at two side-chain lengths featuring polyacrylonitrile (PAN) backbones and photoreactive side chains, synthesized by atom transfer radical polymerization (ATRP). Photoregulated control over membrane properties is attained through a light-induced transition, where the side chains switch between a hydrophobic spiropyran (SP) state and a zwitterionic, hydrophilic merocyanine (MC) state. The light-induced switch between the SP and MC forms changes surface hydrophilicity and causes morphological changes on the membrane surface as evidenced by atomic force microscopy (AFM). Before any phototreatment, the as-coated membrane surface comprises mostly hydrophobic SP groups that allow the adsorption of organic solutes such as proteins the membrane surface, reducing flow rate. Once exposed to UV light, conversion of the SP groups to hydrophilic MC groups leads to the release of adsorbed molecules and the full recovery of the initial water flux. A fouled membrane in the more hydrophilic MC form is also capable of self-cleaning upon conversion to the less hydrophilic SP form by visible light irradiation. The self-cleaning behavior observed for this system, where the surface became less hydrophilic but also experienced a morphological change, demonstrates a novel mechanism that has a mechanical component in addition to the changes in hydrophilicity. It is also the first report, to our knowledge, of self-cleaning performance accompanied by a decrease in hydrophilicity.

18.
ACS Appl Mater Interfaces ; 8(36): 23517-22, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27526052

RESUMEN

Combining the numerous advantages of using light as a stimulus, simple free radical random copolymerization, and the easy, all-aqueous preparation of polyelectrolyte complexes (PECs), we prepared photolabile PEC nanoparticles and demonstrated their rapid degradation under UV light. As a proof of concept demonstration, the dye Nile Red was encapsulated in the PECs and successfully released into the surrounding solution as the polyelectrolyte nanocomplex carriers dissolved upon light irradiation.

19.
Adv Mater ; 28(4): 715-21, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26618480

RESUMEN

Free-standing, stimuli-responsive polyelectrolyte multilayer films enabled by light-induced degradation of sacrificial compartments are introduced. Two examples are described: i) a triple responsive film that uses light, redox, and pH for different functions, and ii) different wavelengths of light for different functions. This approach to multiresponsive materials offers simple design and chemical synthesis while enabling different stimuli to perform separate functions in the same material.

20.
Phys Chem Chem Phys ; 17(47): 31931-7, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26567846

RESUMEN

Surface-bound molecular rotation can occur with the rotational axis either perpendicular (azimuthal) or parallel (altitudinal) to the surface. The majority of molecular rotor studies involve azimuthal rotors, whereas very few altitudinal rotors have been reported. In this work, altitudinal rotors are formed by means of coupling aryl halides through a surface-mediated Ullmann coupling reaction, producing a reaction state-dependent altitudinal molecular rotor/stator. All steps in the reaction on a Cu(111) surface are visualized by low-temperature scanning tunneling microscopy. The intermediate stage of the coupling reaction is a metal-organic complex consisting of two aryl groups attached to a single copper atom with the aryl rings angled away from the surface. This conformation leads to nearly unhindered rotational motion of ethyl groups at the para positions of the aryl rings. Rotational events of the ethyl group are both induced and quantified by electron tunneling current versus time measurements and are only observed for the intermediate structure of the Ullmann coupling reaction, not the starting material or finished product in which the ethyl groups are static. We perform an extensive set of inelastic electron tunneling driven rotation experiments that reveal that torsional motion around the ethyl group is stimulated by tunneling electrons in a one-electron process with an excitation energy threshold of 45 meV. This chemically tunable system offers an ideal platform for examining many fundamental aspects of the dynamics of chemically tunable molecular rotor and motors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...