Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265731

RESUMEN

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gammas spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gammas detection, and were largely transient after Gammas detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazils COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazils COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. NoteThe following manuscript has appeared as Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875. One sentence summaryCOVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259405

RESUMEN

India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness. One Sentence SummaryAltered epidemiological characteristics of B.1.617.2 and delayed public health interventions contributed to the resurgence of SARS-CoV-2 in India from February to May 2021.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258076

RESUMEN

Delhi, the national capital of India, has experienced multiple SARS-CoV-2 outbreaks in 2020 and reached a population seropositivity of over 50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant B.1.617.2 (Delta) replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and partial reduction of immunity elicited by prior infection (median estimates; x1.5-fold, 20% reduction). Seropositivity of an employee and family cohort increased from 42% to 86% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi. One-Sentence SummaryDelhi experienced an overwhelming surge of COVID-19 cases and fatalities peaking in May 2021 as the highly transmissible and immune evasive Delta variant replaced the Alpha variant.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252554

RESUMEN

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. One-Sentence SummaryWe report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249461

RESUMEN

ObjectivesTo determine if there is an association between survival rates in intensive care units (ICU) and occupancy of the unit on the day of admission. DesignNational retrospective observational cohort study during the COVID-19 pandemic. Setting90 English hospital trusts (i.e. groups of hospitals functioning as single operational units). Participants6,686 adults admitted to an ICU in England between 2nd April and 1st December, 2020 (inclusive), with presumed or confirmed COVID-19, for whom data was submitted to the national surveillance programme and met study inclusion criteria. InterventionsN/A Main Outcomes and MeasuresA Bayesian hierarchical approach was used to model the association between hospital trust level (mechanical ventilation compatible) bed occupancy, and in-hospital all-cause mortality. Results were adjusted for unit characteristics (pre-pandemic size), individual patient-level demographic characteristics (age, sex, ethnicity, time-to-ICU admission), and recorded chronic comorbidities (obesity, diabetes, respiratory disease, liver disease, heart disease, hypertension, immunosuppression, neurological disease, renal disease). Results121,151 patient-days were observed, with a mortality rate of 20.8 per 1,000 patient days. Adjusting for patient-level factors, mortality was higher for admissions during periods of high occupancy (>85% occupancy versus the baseline of 45 to 85%) [OR 1.18 (95% posterior credible interval (PCI): 1.00 to 1.38)]. In contrast, mortality was decreased for admissions during periods of low occupancy (<45% relative to the baseline) [OR 0.79 (95% PCI: 0.69 to 0.90)]. Conclusion and RelevanceIncreasing occupancy of beds compatible with mechanical ventilation, a proxy for operational strain, is associated with a higher mortality risk for individuals admitted to ICU. Public health interventions (such as expeditious vaccination programmes and non-pharmaceutical interventions) to control both incidence and prevalence of COVID-19, and therefore keep ICU occupancy low in the context of the pandemic, are necessary to mitigate the impact of this type of resource saturation. O_TEXTBOXSummary Box What is already known on this topicPre-pandemic, higher occupancy of intensive care units was shown to be associated with increased mortality risk. However, there is limited data on the extent to which occupancy levels impacted patient outcomes during the COVID-19 pandemic, especially in light of the mobilisation of significant additional resources. A recent study from Belgium reported a 42% higher mortality during periods of ICU surge capacity deployment, although in the analysis surge capacity was evaluated only as a binary variable, and notably this contradicts earlier results from smaller studies in Australia and Wales, where no association between ICU occupancy and mortality was identified. What this study addsThe results of this study suggest that survival rates for patients with COVID-19 in intensive care settings appears to deteriorate as the occupancy of (surge capacity) beds compatible with mechanical ventilation (a proxy for operational pressure), increases. Moreover, this risk doesnt occur above a specific threshold, but rather appears linear; whereby going from 0% occupancy to 100% occupancy increases risk of mortality by 69% (after adjusting for relevant individual-level factors). Furthermore, risk of mortality based on occupancy on the date of recorded outcome is even higher; OR 2.98 (95% posterior credible interval: 2.33 - 3.83). As such, this national-level cohort study of England provides compelling evidence for a relationship between occupancy and critical care mortality, and highlights the needs for decisive action to control the incidence and prevalence of COVID-19. C_TEXTBOX

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248813

RESUMEN

BackgroundNon-pharmaceutical interventions such as lockdowns, mask wearing and social distancing have been the primary measures to effectively combat the COVID-19 pandemic. Such measures are highly effective when there is strong population wide adherence which needs to be facilitated by information on the current risks posed by the pandemic alongside a clear exposition of the rules and guidelines in place. Here we address the issue of communication on the pandemic by offering data and analysis of online news media coverage of COVID-19. MethodsWe collected 26 million news articles from the front pages of 172 major online news sources in 11 countries (available at http://sciride.org). Using topic detection we identified COVID-19-related content to quantify the proportion of total coverage pandemic received in 2020. Sentiment analysis tool Vader was employed to stratify the emotional polarity of COVID-19 reporting. Further topic detection and sentiment analysis was performed on COVID-19 articles to reveal the leading themes in pandemic reporting and their respective emotional polarizations. FindingsWe find that COVID-19 coverage accounted for approximately 25% of all front-page online news articles between January and October 2020. Sentiment analysis of English-speaking sources reveals that the overall COVID-19 coverage cannot be simply classified as negative due to the disease subject matter, suggesting a wide heterogeneous reporting of the pandemic. Within this heterogenous coverage, 16% of COVID-19 news articles (or 4% of all English-speaking articles) can be classified as highly negatively polarized, citing issues such as death, fear or crisis. InterpretationThe goal of pandemic public health communication is to increase understanding of distancing rules and maximize the impact of any governmental policy. Our results suggest an information overload in COVID-19 reporting that could risk obscuring effective policy communication. We hope that our data and analysis will inform health communication strategy to minimize the risks of COVID-19 while vaccination regimes are being introduced.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20197376

RESUMEN

Following initial declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementation of non-pharmaceutical interventions, it is still not known how they are impacted by changing contact patterns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impacts the loosening of interventions such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanistically to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age-specific contact patterns and use this rich relationship to reconstruct accurate transmission dynamics. Contrary to anecdotal evidence, we find little support for age-shifts in contact and transmission dynamics over time. We estimate that, until August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infections in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0- 9. In areas with continued, community-wide transmission, our transmission model predicts that re-opening kindergartens and elementary schools could facilitate spread and lead to additional COVID-19 attributable deaths over a 90-day period. These findings indicate that targeting interventions to adults aged 20-49 are an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths when kindergartens and elementary schools reopen.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20154617

RESUMEN

Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset (N = 21,000 - 157,000) from the Brazilian Sistema de Informacao de Vigilancia Epidemiologica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised lognormal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20152355

RESUMEN

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We used changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. Nationally, we estimated 3.7% [3.4%-4.0%] of the population had been infected by 1st June 2020, with wide variation between states, and approximately 0.01% of the population was infectious. We also demonstrated that good model forecasts of deaths for the next 3 weeks with low error and good coverage of our credible intervals.

10.
Darlan da Silva Candido; Ingra Morales Claro; Jaqueline Goes de Jesus; William Marciel de Souza; Filipe Romero Rebello Moreira; Simon Dellicour; Thomas A. Mellan; Louis du Plessis; Rafael Henrique Moraes Pereira; Flavia Cristina da Silva Sales; Erika Regina Manuli; Julien Theze; Luis Almeida; Mariane Talon de Menezes; Carolina Moreira Voloch; Marcilio Jorge Fumagalli; Thais de Moura Coletti; Camila Alves Maia Silva; Mariana Severo Ramundo; Mariene Ribeiro Amorim; Henrique Hoeltgebaum; Swapnil Mishra; Mandev Gill; Luiz Max Carvalho; Lewis Fletcher Buss; Carlos Augusto Prete Jr.; Jordan Ashworth; Helder Nakaya; Pedro da Silva Peixoto; Oliver J Brady; Samuel M. Nicholls; Amilcar Tanuri; Atila Duque Rossi; Carlos Kaue Vieira Braga; Alexandra Lehmkuhl Gerber; Ana Paula Guimaraes; Nelson Gaburo Jr.; Cecilia Salete Alencar; Alessandro Clayton de Souza Ferreira; Cristiano Xavier Lima; Jose Eduardo Levi; Celso Granato; Giula Magalhaes Ferreira; Ronaldo da Silva Francisco Jr.; Fabiana Granja; Marcia Teixeira Garcia; Maria Luiza Moretti; Mauricio Wesley Perroud Jr.; Terezinha Marta Pereira Pinto Castineiras; Carolina Dos Santos Lazari; Sarah C Hill; Andreza Aruska de Souza Santos; Camila Lopes Simeoni; Julia Forato; Andrei Carvalho Sposito; Angelica Zaninelli Schreiber; Magnun Nueldo Nunes Santos; Camila Zolini Sa; Renan Pedra Souza; Luciana Cunha Resende Moreira; Mauro Martins Teixeira; Josy Hubner; Patricia Asfora Falabella Leme; Rennan Garcias Moreira; Mauricio Lacerda Nogueira; - CADDE-Genomic-Network; Neil Ferguson; Silvia Figueiredo Costa; Jose Luiz Proenca-Modena; Ana Tereza Vasconcelos; Samir Bhatt; Philippe Lemey; Chieh-Hsi Wu; Andrew Rambaut; Nick J Loman; Renato Santana Aguiar; Oliver G Pybus; Ester Cerdeira Sabino; Nuno Rodrigues Faria.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20128249

RESUMEN

Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Due to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus transmission and epidemic spread remain challenging. We investigate the impact of NPIs in Brazil using epidemiological, mobility and genomic data. Mobility-driven transmission models for Sao Paulo and Rio de Janeiro cities show that the reproduction number (Rt) reached below 1 following NPIs but slowly increased to values between 1 to 1.3 (1.0-1.6). Genome sequencing of 427 new genomes and analysis of a geographically representative genomic dataset from 21 of the 27 Brazilian states identified >100 international introductions of SARS-CoV-2 in Brazil. We estimate that three clades introduced from Europe emerged between 22 and 27 February 2020, and were already well-established before the implementation of NPIs and travel bans. During this first phase of the epidemic establishment of SARS-CoV-2 in Brazil, we find that the virus spread mostly locally and within-state borders. Despite sharp decreases in national air travel during this period, we detected a 25% increase in the average distance travelled by air passengers during this time period. This coincided with the spread of SARS-CoV-2 from large urban centers to the rest of the country. In conclusion, our results shed light on the role of large and highly connected populated centres in the rapid ignition and establishment of SARS-CoV-2, and provide evidence that current interventions remain insufficient to keep virus transmission under control in Brazil. One Sentence SummaryJoint analysis of genomic, mobility and epidemiological novel data provide unique insight into the spread and transmission of the rapidly evolving epidemic of SARS-CoV-2 in Brazil.

11.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20096701

RESUMEN

1Brazil is currently reporting the second highest number of COVID-19 deaths in the world. Here we characterise the initial dynamics of COVID-19 across the country and assess the impact of non-pharmaceutical interventions (NPIs) that were implemented using a semi-mechanistic Bayesian hierarchical modelling approach. Our results highlight the significant impact these NPIs had across states, reducing an average Rt > 3 to an average of 1.5 by 9-May-2020, but that these interventions failed to reduce Rt < 1, congruent with the worsening epidemic Brazil has experienced since. We identify extensive heterogeneity in the epidemic trajectory across Brazil, with the estimated number of days to reach 0.1% of the state population infected since the first nationally recorded case ranging from 20 days in Sao Paulo compared to 60 days in Goias, underscoring the importance of sub-national analyses in understanding asynchronous state-level epidemics underlying the national spread and burden of COVID-19.

12.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20089359

RESUMEN

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28,238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. New interventions, such as enhanced testing and contact tracing are going to be introduced and will likely contribute to reductions in transmission; therefore our estimates should be viewed as pessimistic projections. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a second wave will not be immediately apparent from just monitoring of the daily number of deaths. Our results suggest that SARS-CoV-2 transmission as well as mobility should be closely monitored in the next weeks and months. To compensate for the increase in mobility that will occur due to the relaxation of the currently implemented NPIs, adherence to the recommended social distancing measures alongside enhanced community surveillance including swab testing, contact tracing and the early isolation of infections are of paramount importance to reduce the risk of resurgence in transmission. SUGGESTED CITATIONMichaela A. C. Vollmer, Swapnil Mishra, H Juliette T Unwin, Axel Gandy et al. Using mobility to estimate the transmission intensity of COVID-19 in Italy: a subnational analysis with future scenarios. Imperial College London (2020) doi:https://doi.org/10.25561/78677 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...