Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-471045

RESUMEN

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.

2.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256877

RESUMEN

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20224824

RESUMEN

BackgroundSARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. MethodsWe present 6 months of data from a longitudinal seroprevalence study of 3217 UK healthcare workers (HCWs). Serial measurements of IgG antibodies to SARS-CoV-2 nucleocapsid were obtained. Bayesian mixed linear models were used to investigate antibody waning and associations with age, gender, ethnicity, previous symptoms and PCR results. ResultsIn this cohort of working age HCWs, antibody levels rose to a peak at 24 (95% credibility interval, CrI 19-31) days post-first positive PCR test, before beginning to fall. Considering 452 IgG seropositive HCWs over a median of 121 days (maximum 171 days) from their maximum positive IgG titre, the mean estimated antibody half-life was 85 (95%CrI, 81-90) days. The estimated mean time to loss of a positive antibody result was 137 (95%CrI 127-148) days. We observed variation between individuals; higher maximum observed IgG titres were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity and prior self-reported symptoms were independently associated with higher maximum antibody levels, and increasing age and a positive PCR test undertaken for symptoms with longer antibody half-lives. ConclusionIgG antibody levels to SARS-CoV-2 nucleocapsid wane within months, and faster in younger adults and those without symptoms. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection. SummarySerially measured SARS-CoV-2 anti-nucleocapsid IgG titres from 452 seropositive healthcare workers demonstrate levels fall by half in 85 days. From a peak result, detectable antibodies last a mean 137 days. Levels fall faster in younger adults and following asymptomatic infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA