Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677984

RESUMEN

The electrochemical conversion of CO2 into value-added chemicals is a promising approach for addressing environmental and energy supply problems. In this study, electrochemical CO2 catalysis to ethanol is achieved using incorporated Cu/CuxO nanoparticles into nitrogenous porous carbon cuboids. Pyrolysis of the coordinated Cu cations with nitrogen heterocycles allowed Cu nanoparticles to detach from the coordination complex but remain dispersed throughout the porous carbon cuboids. The heterogeneous composite Cu/CuxO-PCC-0h electrocatalyst reduced CO2 to ethanol at low overpotential in 0.5 M KHCO3, exhibiting maximum ethanol faradaic efficiency of 50% at -0.5 V vs. reversible hydrogen electrode. Such electrochemical performance can be ascribed to the synergy between pyridinic nitrogen species, Cu/CuxO nanoparticles, and porous carbon morphology, together providing efficient CO2 diffusion, activation, and intermediates stabilization. This was supported by the notably high electrochemically active surface area, rich porosity, and efficient charge transfer properties.

2.
RSC Adv ; 11(23): 13743-13750, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35423909

RESUMEN

In the race for viable solutions that could slow down carbon emissions and help in meeting the climate change targets a lot of effort is being made towards the development of suitable CO2 adsorbents with high surface area, tunable pore size and surface functionalities that could enhance selective adsorption. Here, we explored the use of silsesquioxane pillared graphene oxide for CO2 capture; we modified silsesquioxane loading and processing parameters in order to obtain pillared structures with nanopores of the tailored size and surface properties to maximize the CO2 sorption capacity. Powder X-ray diffraction, XPS and FTIR spectroscopies, thermal analysis (DTA/TGA), surface area measurements and CO2 adsorption measurements were employed to characterize the materials and evaluate their performance. Through this optimisation process, materials with good CO2 storage capacities of up to 1.7/1.5 mmol g-1 at 273 K/298 K in atmospheric pressure, were achieved.

3.
Front Chem ; 8: 564838, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33094101

RESUMEN

In this work, we report on a facile and rapid synthetic procedure to create highly porous heterostructures with tailored properties through the silylation of organically modified graphene oxide. Three silica precursors with various structural characteristics (comprising alkyl or phenyl groups) were employed to create high-yield silica networks as pillars between the organo-modified graphene oxide layers. The removal of organic molecules through the thermal decomposition generates porous heterostructures with very high surface areas (≥ 500 m2/g), which are very attractive for potential use in diverse applications such as catalysis, adsorption and as fillers in polymer nanocomposites. The final hybrid products were characterized by X-ray diffraction, Fourier transform infrared and X-ray photoelectron spectroscopies, thermogravimetric analysis, scanning electron microscopy and porosity measurements. As proof of principle, the porous heterostructure with the maximum surface area was chosen for investigating its CO2 adsorption properties.

4.
Nanomaterials (Basel) ; 9(8)2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416273

RESUMEN

In the present study, we developed novel ß-glucosidase-based nano-biocatalysts for the bioconversion of oleuropein to hydroxytyrosol. Using non-covalent or covalent immobilization approaches, ß-glucosidases from almonds and Thermotoga maritima were attached for the first time on oxidized and non-oxidized porous carbon cuboids (PCC). Various methods were used for the characterization of the bio-nanoconjugates, such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and fluorescence spectroscopy. The oxidation state of the nanο-support and the immobilization procedure play a key role for the immobilization efficiency or the catalytic activity of the immobilized ß-glucosidases. The nano-biocatalysts were successfully used for the hydrolysis of oleuropein, which leads to the formation of its bioactive derivative, hydroxytyrosol (up to 2.4 g L-1), which is a phenolic compound with numerous health benefits. The bio-nanoconjugates exhibited high thermal and operational stability (up to 240 hours of repeated use), which indicated that they are efficient tools for various bio-transformations.

5.
Nano Lett ; 19(3): 1520-1526, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30674194

RESUMEN

Similar to carbon, germanium exists in various structures such as three-dimensional crystalline germanium and germanene, a two-dimensional germanium atomic layer. Regarding the electronic properties, they are either semiconductors or Dirac semimetals. Here, we report a highly conductive metallic state in thermally annealed germanane (hydrogen-terminated germanene, GeH), which shows a resistivity of ∼10-7 Ω·m that is orders of magnitude lower than any other allotrope of germanium. By comparing the resistivity, Raman spectra, and thickness change measured by AFM, we suggest the highly conductive metallic state is associated with the dehydrogenation during heating, which likely transforms germanane thin flakes to multilayer germanene. In addition, weak antilocalization is observed, serving as solid evidence for strong spin-orbit interaction (SOI) in germanane/germanene. Our study opens a possible new route to investigate the electrical transport properties of germanane/germanene, and the large SOI might provide the essential ingredients to access their topological states predicted theoretically.

6.
Curr Pharm Biotechnol ; 20(10): 858-873, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30526454

RESUMEN

BACKGROUND: In this study, silver nanoparticles (AgNPs) were synthesized using Banana Peel Extract (BPE), and characterized using UV- Vis absorbance spectroscopy, X-Ray Powder Diffraction (XRD), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). UV-Vis absorbance spectroscopy showed the characteristic plasmon resonance of AgNPs at 433 nm. The synthesized AgNPs were tested for their antibacterial and antioxidant properties. METHODS: Nanoparticle size (between 5 and 9 nm) was measured using AFM, whereas their crystallinity was shown by XRD. FTIR identified the ligands that surround the nanoparticle surface. The synthesis conditions were optimised using Central Composite Design (CCD) under Response Surface Methodology (RSM). Silver nitrate (AgNO3) and BPE concentrations (0.25-2.25 mM, 0.2-1.96 % v/v respectively), incubation period (24-120 h) and pH level (2.3-10.1) were chosen as the four independent factors. The fitting parameters (i.e. the wavelength at peak maximum, the peak area, and the peak width) of a Voigt function of the UV- Vis spectra were chosen as the responses. The antibacterial properties of the AgNPs were tested against Escherichia coli and Staphylococcus aureus using the tube dilution test. The synthesized nanoparticles were tested for total phenolic composition (TPC) using the Folin - Ciocalteau method, whereas their radical scavenging activity using the 1,1-diphenyl-2- picrylhydrazyl (DPPH) free radical assay. RESULTS: An optimum combination of all independent factors was identified (BPE concentration 1.7 % v/v, AgNO3 concentration 1.75 mM, incubation period 48 h, pH level 4.3), giving minimum peak wavelength and peak width. The nanoparticles inhibited the growth of E. coli, whereas S. aureus growth was not affected. However, no superiority of AgNPs compared to AgNO3 used for their fabrication (1.75 mM), with respect to antibacterial action, could be here demonstrated. AgNPs were found to present moderate antioxidant activity (44.71± 3.01%), as measured using DPPH assay, while the BPE (used for their fabrication) presented alone (100%) an antioxidant action equal to 86±1%, something expected due to its higher total phenolic content (TPC) compared to that of nanoparticles. CONCLUSION: Altogether, the results of this study highlight the potential of an eco-friendly method to synthesize nanoparticles and its promising optimization through statistical experimental design. Future research on the potential influence of other synthesis parameters on nanoparticles yield and properties could further promote their useful biological activities towards their successful application in the food industry and other settings.


Asunto(s)
Antibacterianos/síntesis química , Antioxidantes/síntesis química , Nanopartículas del Metal/química , Musa/química , Nanotecnología/métodos , Extractos Vegetales/química , Plata/farmacología , Análisis de Varianza , Antibacterianos/farmacología , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Escherichia coli/efectos de los fármacos , Humanos , Picratos/química , Proyectos de Investigación/estadística & datos numéricos , Plata/química , Staphylococcus aureus/efectos de los fármacos
7.
ACS Omega ; 2(5): 2090-2099, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457563

RESUMEN

The special electronic, optical, thermal, and mechanical properties of graphene resulting from its 2D nature, as well as the ease of functionalizing it through a simple acid treatment, make graphene an ideal building block for the development of new hybrid nanostructures with well-defined dimensions and behavior. Such hybrids have great potential as active materials in applications such as gas storage, gas/liquid separation, photocatalysis, bioimaging, optoelectronics, and nanosensing. In this study, luminescent carbon dots (C-dots) were sandwiched between oxidized graphene sheets to form novel hybrid multilayer films. Our thin-film preparation approach combines self-assembly with the Langmuir-Schaefer deposition and uses graphene oxide nanosheets as template for grafting C-dots in a bidimensional array. Repeating the cycle results in a facile and low-cost layer-by-layer procedure for the formation of highly ordered hybrid multilayers, which were characterized by photoluminescence, UV-visible, X-ray photoelectron, and Raman spectroscopies, as well as X-ray diffraction and atomic force microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...