Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cell Metab ; 36(5): 1076-1087.e4, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38653246

RESUMEN

Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.


Asunto(s)
Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Ratones , Humanos , Masculino , Tejido Adiposo/metabolismo , Ratones Noqueados , Hígado/metabolismo , Femenino , Adiposidad
2.
PLoS Genet ; 19(11): e1011012, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37931001

RESUMEN

The mutational processes dictating the accumulation of mutations in genomes are shaped by genetic background, environment and their interactions. Accurate quantification of mutation rates and spectra under drugs has important implications in disease treatment. Here, we used whole-genome sequencing and time-resolved growth phenotyping of yeast mutation accumulation lines to give a detailed view of the mutagenic effects of rapamycin and hydroxyurea on the genome and cell growth. Mutation rates depended on the genetic backgrounds but were only marginally affected by rapamycin. As a remarkable exception, rapamycin treatment was associated with frequent chromosome XII amplifications, which compensated for rapamycin induced rDNA repeat contraction on this chromosome and served to maintain rDNA content homeostasis and fitness. In hydroxyurea, a wide range of mutation rates were elevated regardless of the genetic backgrounds, with a particularly high occurrence of aneuploidy that associated with dramatic fitness loss. Hydroxyurea also induced a high T-to-G and low C-to-A transversion rate that reversed the common G/C-to-A/T bias in yeast and gave rise to a broad range of structural variants, including mtDNA deletions. The hydroxyurea mutation footprint was consistent with the activation of error-prone DNA polymerase activities and non-homologues end joining repair pathways. Taken together, our study provides an in-depth view of mutation rates and signatures in rapamycin and hydroxyurea and their impact on cell fitness, which brings insights for assessing their chronic effects on genome integrity.


Asunto(s)
Hidroxiurea , Saccharomyces cerevisiae , Humanos , Hidroxiurea/farmacología , Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Mutación , Inestabilidad Genómica/genética , ADN Ribosómico/genética
3.
J Transl Med ; 21(1): 715, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828508

RESUMEN

OBJECTIVE: Atherosclerosis is a chronic inflammatory process induced by the influx and entrapment of excess lipoproteins into the intima media of arteries. Previously, our lab demonstrated that systemic PTP1B inhibition protects against atherosclerosis in preclinical LDLR-/- models. Similarly, it was shown that myeloid-specific PTP1B ablation decreases plaque formation and ameliorates dyslipidaemia in the ApoE-/- model of atherosclerosis. We hypothesized that the relevant improvements in dyslipidaemia following modification of PTP1B activation may either result from changes in hepatic cholesterol biosynthesis and/or increased uptake and degradation by liver-resident macrophages. We examined this in animal models and patients with coronary artery disease. METHODS: In this study, we determined the cholesterol-lowering effect of myeloid-PTP1B deletion in mice fed a high-fat high-cholesterol diet and examined effects on total cholesterol levels and lipoprotein profiles. We also determined the effects of PTP1B inhibition to oxLDL-C challenge on foam cell formation and cholesterol efflux in human monocytes/macrophages. RESULTS: We present evidence that myeloid-PTP1B deficiency significantly increases the affinity of Kupffer cells for ApoB containing lipoproteins, in an IL10-dependent manner. We also demonstrate that PTP1B inhibitor, MSI-1436, treatment decreased foam cell formation in Thp1-derived macrophages and increased macrophage cholesterol efflux to HDL in an AMPK-dependent manner. We present evidence of three novel and distinct mechanisms regulated by PTP1B: an increase in cholesterol efflux from foam cells, decreased uptake of lipoproteins into intra-lesion macrophages in vitro and a decrease of circulating LDL-C and VLDL-C in vivo. CONCLUSIONS: Overall, these results suggest that myeloid-PTP1B inhibition has atheroprotective effects through improved cholesterol handling in atherosclerotic lesions, as well as increased reverse cholesterol transport. Trial registration Research registry, researchregistry 3235. Registered 07 November 2017, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/5a01d0fce7e1904e93e0aac5/ .


Asunto(s)
Aterosclerosis , Dislipidemias , Humanos , Ratones , Animales , Proteínas Quinasas Activadas por AMP , Aterosclerosis/patología , Colesterol/metabolismo , Homeostasis , Ratones Noqueados
4.
Sci Rep ; 13(1): 3937, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894641

RESUMEN

Fenretinide is a synthetic retinoid that can prevent obesity and improve insulin sensitivity in mice by directly altering retinol/retinoic acid homeostasis and inhibiting excess ceramide biosynthesis. We determined the effects of Fenretinide on LDLR-/- mice fed high-fat/high-cholesterol diet ± Fenretinide, a model of atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Fenretinide prevented obesity, improved insulin sensitivity and completely inhibited hepatic triglyceride accumulation, ballooning and steatosis. Moreover, Fenretinide decreased the expression of hepatic genes driving NAFLD, inflammation and fibrosis e.g. Hsd17b13, Cd68 and Col1a1. The mechanisms of Fenretinide's beneficial effects in association with decreased adiposity were mediated by inhibition of ceramide synthesis, via hepatic DES1 protein, leading to increased dihydroceramide precursors. However, Fenretinide treatment in LDLR-/- mice enhanced circulating triglycerides and worsened aortic plaque formation. Interestingly, Fenretinide led to a fourfold increase in hepatic sphingomyelinase Smpd3 expression, via a retinoic acid-mediated mechanism and a further increase in circulating ceramide levels, linking induction of ceramide generation via sphingomyelin hydrolysis to a novel mechanism of increased atherosclerosis. Thus, despite beneficial metabolic effects, Fenretinide treatment may under certain circumstances enhance the development of atherosclerosis. However, targeting both DES1 and Smpd3 may be a novel, more potent therapeutic approach for the treatment of metabolic syndrome.


Asunto(s)
Aterosclerosis , Fenretinida , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Ceramidas/metabolismo , Dieta Alta en Grasa , Fenretinida/farmacología , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Tretinoina/farmacología , Receptores de LDL/metabolismo
5.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36179219

RESUMEN

The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes.


Asunto(s)
Micosis , Animales , Humanos , Micosis/microbiología , Hongos , Ecosistema , Canadá , Plantas
6.
Nature ; 603(7901): 455-463, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264797

RESUMEN

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness1-3. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces4-6. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution.


Asunto(s)
Flujo Genético , Modelos Genéticos , Evolución Biológica , ADN , Evolución Molecular , Regulación de la Expresión Génica , Mutación/genética , Fenotipo , Saccharomyces cerevisiae/genética
7.
Sci Rep ; 11(1): 6949, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772049

RESUMEN

Excessive expansion of adipose tissue in obesity typically leads to overflow and accumulation of lipids in other tissues, causing fatty liver disease and atherosclerosis. The intracellular protein, phosphoprotein enriched in astrocytes (PEA)-15 has been linked to metabolic disease but its role in lipid storage has not been examined. To delineate the role of PEA-15 in adipose tissue, we placed PEA-15-/- mice on a high fat diet. These mice developed increased body weight and greater white adipose tissue expansion compared to high fat diet-fed wild type mice. This was due to increased adipocyte cell size in PEA-15-/- mice consistent with greater lipid storage capacity. Surprisingly, PEA-15-/- mice exhibited improvements in whole body insulin sensitivity, lower hepatic weight and decreased serum triglycerides indicating a protective phenotype. To determine effects on atherosclerosis, PEA-15-/- mice were crossed with the ApoE-/- mice on a high fat diet. Strikingly, these mice were protected from atherosclerosis and had less hepatic lipid accumulation despite increased adiposity. Therefore, we reveal for the first time that PEA-15 plays a novel role in regulating the expansion of adipose tissue. Decreasing PEA-15 expression increases the sequestering of lipids in adipose tissue, protecting other tissues in obesity, thereby improving metabolic health.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/crecimiento & desarrollo , Adiposidad/genética , Proteínas Reguladoras de la Apoptosis/genética , Obesidad/patología , Células 3T3 , Adiposidad/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Astrocitos/metabolismo , Aterosclerosis/patología , Aterosclerosis/prevención & control , Línea Celular , Dieta Alta en Grasa , Resistencia a la Insulina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/metabolismo , Triglicéridos/sangre
8.
ChemMedChem ; 15(16): 1579-1590, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32497314

RESUMEN

Fenretinide (4-HPR) is a synthetic derivative of all-trans-retinoic acid (ATRA) characterised by improved therapeutic properties and toxicological profile relative to ATRA. 4-HPR has been mostly investigated as an anti-cancer agent, but recent studies showed its promising therapeutic potential for preventing metabolic syndrome. Several biological targets are involved in 4-HPR's activity, leading to the potential use of this molecule for treating different pathologies. However, although 4-HPR displays quite well-understood multitarget promiscuity with regards to pharmacology, interpreting its precise physiological role remains challenging. In addition, despite promising results in vitro, the clinical efficacy of 4-HPR as a chemotherapeutic agent has not been satisfactory so far. Herein, we describe the preparation of a library of 4-HPR analogues, followed by the biological evaluation of their anti-cancer and anti-obesity/diabetic properties. The click-type analogue 3 b showed good capacity to reduce the amount of lipid accumulation in 3T3-L1 adipocytes during differentiation. Furthermore, it showed an IC50 of 0.53±0.8 µM in cell viability tests on breast cancer cell line MCF-7, together with a good selectivity (SI=121) over noncancerous HEK293 cells. Thus, 3 b was selected as a potential PET tracer to study retinoids in vivo, and the radiosynthesis of [18 F]3b was successfully developed. Unfortunately, the stability of [18 F]3b turned out to be insufficient to pursue imaging studies.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Fenretinida/farmacología , Síndrome Metabólico/prevención & control , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fenretinida/síntesis química , Fenretinida/química , Radioisótopos de Flúor , Humanos , Lípidos/antagonistas & inhibidores , Ratones , Estructura Molecular , Tomografía de Emisión de Positrones , Retinoides/análisis , Relación Estructura-Actividad
9.
PLoS Genet ; 16(5): e1008777, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32357148

RESUMEN

Population-level sampling and whole-genome sequences of different individuals allow one to identify signatures of hybridization, gene flow and potential molecular mechanisms of environmental responses. Here, we report the isolation of 160 Saccharomyces eubayanus strains, the cryotolerant ancestor of lager yeast, from ten sampling sites in Patagonia along 2,000 km of Nothofagus forests. Frequency of S. eubayanus isolates was higher towards southern and colder regions, demonstrating the cryotolerant nature of the species. We sequenced the genome of 82 strains and, together with 23 available genomes, performed a comprehensive phylogenetic analysis. Our results revealed the presence of five different lineages together with dozens of admixed strains. Various analytical methods reveal evidence of gene flow and historical admixture between lineages from Patagonia and Holarctic regions, suggesting the co-occurrence of these ancestral populations. Analysis of the genetic contribution to the admixed genomes revealed a Patagonian genetic origin of the admixed strains, even for those located in the North Hemisphere. Overall, the Patagonian lineages, particularly the southern populations, showed a greater global genetic diversity compared to Holarctic and Chinese lineages, in agreement with a higher abundance in Patagonia. Thus, our results are consistent with a likely colonization of the species from peripheral glacial refugia from South Patagonia. Furthermore, fermentative capacity and maltose consumption resulted negatively correlated with latitude, indicating better fermentative performance in northern populations. Our genome analysis, together with previous reports in the sister species S. uvarum suggests that a S. eubayanus ancestor was adapted to the harsh environmental conditions of Patagonia, a region that provides the ecological conditions for the diversification of these ancestral lineages.


Asunto(s)
Variación Genética , Saccharomyces/clasificación , Secuenciación Completa del Genoma/métodos , Aclimatación , Argentina , Chile , Frío , Flujo Génico , Genoma Fúngico , Filogenia , Filogeografía , Saccharomyces/genética
10.
Genome Res ; 30(5): 697-710, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32277013

RESUMEN

Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.


Asunto(s)
Expansión de las Repeticiones de ADN , Proteínas de Saccharomyces cerevisiae/genética , Pared Celular , Genes Fúngicos , Metabolismo de los Lípidos , Glicoproteínas de Membrana/genética , Metionina/metabolismo , Purinas/metabolismo , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología
11.
Neuropharmacology ; 162: 107828, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31654703

RESUMEN

Cholinergic dysfunction plays a critical role in a number of disease states, and the loss of functional muscarinic acetylcholine receptors plays a key role in disease pathogenesis. Therefore, preventing receptor downregulation would maintain functional receptor number, and be predicted to alleviate symptoms. However, the molecular mechanism(s) underlying muscarinic receptor downregulation are currently unknown. Here we demonstrate that the M2 muscarinic receptor undergoes rapid lysosomal proteolysis, and this lysosomal trafficking is facilitated by ubiquitination of the receptor. Importantly, we show that this trafficking is driven specifically by ESCRT mediated involution. Critically, we provide evidence that disruption of this process leads to a re-routing of the trafficking of the M2 receptor away from the lysosome and into recycling pathway, and eventually back to the plasma membrane. This study is the first to identify the process by which the M2 muscarinic acetylcholine receptor undergoes endocytic sorting, and critically reveals a regulatory checkpoint that represents a target to pharmacologically increase the number of functional muscarinic receptors within the central nervous system.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Receptor Muscarínico M2/metabolismo , Ubiquitina/metabolismo , Animales , Carbacol/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cloroquina/farmacología , Agonistas Colinérgicos/farmacología , Regulación hacia Abajo , Complejos de Clasificación Endosomal Requeridos para el Transporte/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/ultraestructura , Ganglios Espinales/citología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Microscopía Confocal , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Proteolisis , Ratas , Receptor Muscarínico M2/efectos de los fármacos , Receptor Muscarínico M2/genética , Transfección , Ubiquitina/efectos de los fármacos , Ubiquitinación
12.
Yeast ; 36(12): 685-700, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31423599

RESUMEN

Yeasts are essential for many processes, including the production of some of our most beloved foods and beverages. Less is known to the public about the far-reaching impacts of yeasts on other products such as biofuels, pharmaceuticals, and industrial products. By leveraging and combining newly discovered yeast genetic diversity with now affordable and efficient genetic engineering and synthetic biology tools, academic and industrial yeast labs have designed yeast cell factories for a wide range of novel applications such as the production of medicines, components of human breast milk, heme for meat substitutes, bioplastics, and other biomaterials. This review covers the newest technologies developed for yeast research including synthetic biology and their use in the engineering of yeast cell factories for emerging applications.


Asunto(s)
Ingeniería Metabólica , Levaduras/genética , Levaduras/metabolismo , Técnicas Biosensibles , Vías Biosintéticas/genética , Evolución Molecular Dirigida , Redes Reguladoras de Genes , Variación Genética , Genómica , Biología Sintética , Levaduras/clasificación , Levaduras/crecimiento & desarrollo
13.
Nat Commun ; 10(1): 1607, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962448

RESUMEN

The outcome of fungal infections depends on interactions with innate immune cells. Within a population of macrophages encountering Candida albicans, there are distinct host-pathogen trajectories; however, little is known about the molecular heterogeneity that governs these fates. Here we developed an experimental system to separate interaction stages and single macrophage cells infected with C. albicans from uninfected cells and assessed transcriptional variability in the host and fungus. Macrophages displayed an initial up-regulation of pathways involved in phagocytosis and proinflammatory response after C. albicans exposure that declined during later time points. Phagocytosed C. albicans shifted expression programs to survive the nutrient poor phagosome and remodeled the cell wall. The transcriptomes of single infected macrophages and phagocytosed C. albicans displayed a tightly coordinated shift in gene expression co-stages and revealed expression bimodality and differential splicing that may drive infection outcome. This work establishes an approach for studying host-pathogen trajectories to resolve heterogeneity in dynamic populations.


Asunto(s)
Candida albicans/fisiología , Regulación Fúngica de la Expresión Génica , Interacciones Microbiota-Huesped/genética , Macrófagos/inmunología , Fagocitosis/inmunología , Animales , Separación Celular/métodos , Pared Celular/genética , Pared Celular/metabolismo , Células Cultivadas , Femenino , Citometría de Flujo/métodos , Perfilación de la Expresión Génica , Interacciones Microbiota-Huesped/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Fagocitosis/genética , Cultivo Primario de Células , Empalme del ARN/inmunología , Transducción de Señal/inmunología , Transcriptoma/inmunología
14.
Fungal Genet Biol ; 121: 1-9, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30223087

RESUMEN

Early-diverging anaerobic fungi (order: Neocallimastigomycota), lignocelluolytic chytrid-like fungi central to fiber degradation in the digestive tracts of large herbivores, are attractive sources of cellulases and hemicellulases for biotechnology. Enzyme expression is tightly regulated and coordinated through mechanisms that remain unelucidated to optimize hydrolytic efficiency. Our analysis of anaerobic fungal transcriptomes reveals hundreds of cis-natural antisense transcripts (cis-NATs), which we hypothesize play an integral role in this regulation. Through integrated genomic and transcriptomic sequencing on a range of catabolic substrates, we validate these NATs in three species (Anaeromyces robustus, Neocallimasix californiae, and Piromyces finnis), and analyze their expression patterns and prevalence to gain insight into their function. NAT function was diverse and conserved across the three fungal genomes studied, with 10% of all metabolic process NATs associated with lignocellulose hydrolysis. Despite these similarities, however, only eleven gene targets were conserved orthologs. Several NATs were dynamically regulated by lignocellulosic substrates while their gene targets were unregulated. This observation is consistent with a hypothesized, but untested, regulatory mechanism where selected genes are exclusively regulated at the transcriptional/post-transcriptional level by NATs. However, only genes with high NAT relative expression levels displayed this phenomenon, suggesting a selection mechanism that favors larger dynamic ranges for more precise control of gene expression. In addition to this mode, we observed two other possible regulatory fates: canonical transcriptional regulation with no NAT response, and positive co-regulation of target mRNA and cognate NAT, which we hypothesize is a fine-tuning strategy to locally negate control outputs from global regulators. Our work reveals the complex contributions of antisense RNA to the catabolic response in anaerobic fungi, highlighting its importance in understanding lignocellulolytic activity for bioenergy applications. More importantly, the relative expression of NAT to target may form a critical determinant of transcriptional vs post-transcriptional (NAT) control of gene expression in primitive anaerobic fungi.


Asunto(s)
Anaerobiosis/genética , Metabolismo/genética , Neocallimastigomycota/genética , Regulación Fúngica de la Expresión Génica/genética , Hidrólisis , Lignina/genética , Lignina/metabolismo , ARN sin Sentido/genética , ARN de Planta/genética , Transcriptoma/genética
15.
Nat Methods ; 15(7): 543-546, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915188

RESUMEN

Functional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets.


Asunto(s)
Genómica/métodos , Internet , Aprendizaje Automático , ADN/genética , Bases de Datos de Ácidos Nucleicos , Técnicas de Amplificación de Ácido Nucleico , ARN/genética , Programas Informáticos
17.
Cancer Res ; 78(1): 75-87, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29122767

RESUMEN

Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B-/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia.Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR.


Asunto(s)
Leucemia Mieloide Aguda/etiología , Hígado/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Bazo/patología , Animales , Citocinas/genética , Femenino , Leucemia Mieloide Aguda/genética , Hígado/enzimología , Longevidad/genética , Macrófagos/enzimología , Macrófagos/patología , Masculino , Ratones Noqueados , Células Mieloides/enzimología , Nitrilos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirazoles/farmacología , Pirimidinas , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/metabolismo , Bazo/enzimología , Proteína bcl-X/metabolismo
18.
BMC Musculoskelet Disord ; 18(1): 513, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29207984

RESUMEN

BACKGROUND: A retrospective single centre cohort analysis was performed to evaluate an individualised radial extracorporeal shock wave therapy (rESWT) protocol for treatment of symptomatic calcific shoulder tendinopathy. METHODS: 67 patients (79 Shoulders) were identified with 76 shoulders included for analysis. rESWT treatment protocol was adapted according to individual response to treatment. Variables included number of sessions, shockwave impulses, pressure and frequency. Success rate was estimated as the percentage of patients having ≥60% visual analogue score (VAS) pain decrease at follow-up. Recurrence at 1 year was recorded. RESULTS: Using this individualised symptom guided protocol, patients underwent a mean of 7 ± 1.5 rESWT sessions, with mean pressure of 1.7 ± 0.2 bar, mean frequency of 5 ± 0.3 Hz and 2175 ± 266 impulses. The mean pre-treatment VAS score of 6.7 ± 1.1 was significantly decreased to 3.2 ± 0.8 immediately post-treatment, 2.6 ± 0.9 at 1 month, 1.7 ± 1.0 at 3 months and 0.8 ± 1.0 at 1 year follow up (α = 0.05). One-year success rate was estimated at 92% and 1-year recurrence rate was 7%. CONCLUSIONS: We conclude that in this retrospective study an individualised rESWT protocol resulted in a high success rate with low number of recurrences. Randomised controlled trials to support these findings are recommended.


Asunto(s)
Calcinosis/terapia , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Artropatías/terapia , Medicina de Precisión/métodos , Articulación del Hombro , Tendinopatía/terapia , Enfermedades Vasculares/terapia , Adulto , Calcinosis/diagnóstico , Femenino , Humanos , Artropatías/diagnóstico , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Articulación del Hombro/patología , Tendinopatía/diagnóstico , Enfermedades Vasculares/diagnóstico
19.
Clin Sci (Lond) ; 131(20): 2489-2501, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899902

RESUMEN

Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with type 1 or type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance, due to impaired insulin receptor (IR) signalling. Here, we demonstrate that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR prevents and reverses atherosclerotic plaque formation in an LDLR-/- mouse model of atherosclerosis. Acute (single dose) or chronic PTP1B inhibitor (trodusquemine) treatment of LDLR-/- mice decreased weight gain and adiposity, improved glucose homeostasis and attenuated atherosclerotic plaque formation. This was accompanied by a reduction in both, circulating total cholesterol and triglycerides, a decrease in aortic monocyte chemoattractant protein-1 (MCP-1) expression levels and hyperphosphorylation of aortic Akt/PKB and AMPKα. Our findings are the first to demonstrate that PTP1B inhibitors could be used in prevention and reversal of atherosclerosis development and reduction in CVD risk.


Asunto(s)
Aorta/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Colestanos/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Placa Aterosclerótica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Receptores de LDL/deficiencia , Espermina/análogos & derivados , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aorta/enzimología , Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Biomarcadores/sangre , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Quimiocina CCL2/metabolismo , Colesterol/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Esquema de Medicación , Predisposición Genética a la Enfermedad , Homeostasis , Masculino , Ratones Noqueados , Fenotipo , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de LDL/genética , Transducción de Señal/efectos de los fármacos , Espermina/administración & dosificación , Factores de Tiempo , Triglicéridos/sangre , Pérdida de Peso
20.
BMJ Case Rep ; 20172017 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-28536215

RESUMEN

Sesamoid osteonecrosis is a disabling condition resulting in severe forefoot pain, for which there are limited treatment options. We present a 52-year-old man with 1-year history of pain, aggravated by walking and playing tennis. On examination, pain was localised to plantar aspect of the first metatarsophalangeal joint. Imaging revealed evolving end-stage avascular necrosis of lateral sesamoid with early secondary degenerative changes. Previous exhaustive conservative treatment had been unsuccessful in alleviating his pain. As an alternative to surgery, radial extracorporeal shock wave therapy (rESWT) was proposed. Treatment protocol was 2000 pulses at frequency of 5 Hz, and pressure was varied from 1.2 to 1.8 bar according to patient tolerance. A total of eight sessions were delivered. At completion of treatment, the patient reported minimal discomfort to no pain and was able to return to playing tennis with no recurrence. We propose rESWT to be an effective novel conservative treatment for sesamoid osteonecrosis.


Asunto(s)
Tratamiento con Ondas de Choque Extracorpóreas , Articulación Metatarsofalángica , Osteonecrosis/radioterapia , Huesos Sesamoideos , Humanos , Masculino , Persona de Mediana Edad , Inducción de Remisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...