Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514673

RESUMEN

An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM, comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM) model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99, NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM, gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore, performance is optimized by adding a grid search hyperparameter optimization technique with K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017, are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using grid search and cross-fold validation. Experimental results demonstrate the superior performance of the proposed model for IoT threat detection.

2.
Sensors (Basel) ; 23(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37420546

RESUMEN

Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as NIST fourth-round finalists. The research assessed the key generation, encapsulation, and decapsulation operations, providing insights into their efficiency and suitability for real-world applications. Further research and standardization efforts are required to enable secure and efficient post-quantum encryption. When selecting appropriate post-quantum encryption algorithms for specific applications, factors such as security levels, performance requirements, key sizes, and platform compatibility should be taken into account. This paper provides helpful insight for post-quantum cryptography researchers and practitioners, assisting in the decision-making process for selecting appropriate algorithms to protect confidential data in the age of quantum computing.


Asunto(s)
Seguridad Computacional , Metodologías Computacionales , Teoría Cuántica , Algoritmos , Computadores
3.
Sensors (Basel) ; 23(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37177678

RESUMEN

In this paper, a novel ultra-wideband UWB antenna element with triple-band notches is proposed. The proposed UWB radiator element operates from 2.03 GHz up to 15.04 GHz with triple rejected bands at the WiMAX band (3.28-3.8 GHz), WLAN band (5.05-5.9 GHz), and X-band (7.78-8.51 GHz). In addition, the radiator supports the Bluetooth band (2.4-2.483 GHz). Three different techniques were utilized to obtain the triple-band notches. An alpha-shaped coupled line with a stub-loaded resonator (SLR) band stop filter was inserted along the main feeding line before the radiator to obtain a WiMAX band notch characteristic. Two identical U-shaped slots were etched on the proposed UWB radiator to achieve WLAN band notch characteristics with a very high degree of selectivity. Two identical metallic frames of an octagon-shaped electromagnetic band gap structure (EBG) were placed along the main feeding line to achieve the notch characteristic with X-band satellite communication with high sharpness edges. A novel UWB multiple-input multiple-output (MIMO) radiator is proposed. The proposed UWB-MIMO radiator was fabricated on FR-4 substrate material and measured. The isolation between every two adjacent ports was below -20 dB over the FCC-UWB spectrum and the Bluetooth band for the four MIMO antennas. The envelope correlation coefficient (ECC) between the proposed antennas in MIMO does not exceed 0.05. The diversity gains (DG) for all the radiators are greater than 9.98 dB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...