Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 10: 1297750, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144465

RESUMEN

Udder health remains a priority for the global dairy industry to reduce pain, economic losses, and antibiotic usage. The dry period is a critical time for the prevention of new intra-mammary infections and it provides a point for curing existing intra-mammary infections. Given the wealth of udder health data commonly generated through routine milk recording and the importance of udder health to the productivity and longevity of individual cows, an opportunity exists to extract greater value from cow-level data to undertake risk-based decision-making. The aim of this research was to construct a machine learning model, using routinely collected farm data, to make probabilistic predictions at drying off for an individual cow's risk of a raised somatic cell count (hence intra-mammary infection) post-calving. Anonymized data were obtained as a large convenience sample from 108 UK dairy herds that undertook regular milk recording. The outcome measure evaluated was the presence of a raised somatic cell count in the 30 days post-calving in this observational study. Using a 56-farm training dataset, machine learning analysis was performed using the extreme gradient boosting decision tree algorithm, XGBoost. External validation was undertaken on a separate 28-farm test dataset. Statistical assessment to evaluate model performance using the external dataset returned calibration plots, a Scaled Brier Score of 0.095, and a Mean Absolute Calibration Error of 0.009. Test dataset model calibration performance indicated that the probability of a raised somatic cell count post-calving was well differentiated across probabilities to allow an end user to apply group-level risk decisions. Herd-level new intra-mammary infection rate during the dry period was a key driver of the probability that a cow had a raised SCC post-calving, highlighting the importance of optimizing environmental hygiene conditions. In conclusion, this research has determined that probabilistic classification of the risk of a raised SCC in the 30 days post-calving is achievable with a high degree of certainty, using routinely collected data. These predicted probabilities provide the opportunity for farmers to undertake risk decision-making by grouping cows based on their probabilities and optimizing management strategies for individual cows immediately after calving, according to their likelihood of intra-mammary infection.

2.
J Dairy Sci ; 106(10): 7033-7042, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37500436

RESUMEN

Lameness in dairy cattle is a highly prevalent condition that impacts on the health and welfare of dairy cows. Prompt detection and implementation of effective treatment is important for managing lameness. However, major limitations are associated with visual assessment of lameness, which is the most commonly used method to detect lameness. The aims of this study were to investigate the use of metabolomics and machine learning to develop novel methods to detect lameness. Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) alongside machine learning models and a stability selection method were utilized to evaluate the predictive accuracy of differences in the metabolomics profile of first-lactation dairy cows before (during the transition period) and at the time of lameness (based on visual assessment using the 0-3 scale of the Agriculture and Horticulture Development Board). Urine samples were collected from 2 cohorts of dairy heifers and stored at -86°C before analysis using LC-MS. Cohort 1 (n = 90) cows were recruited as current first-lactation cows with weekly mobility scores recorded over a 4-mo timeframe, from which newly lame and nonlame cows were identified. Cohort 2 (n = 30) cows were recruited within 3 wk before calving, and lameness events (based on mobility score) were recorded through lactation until a minimum of 70 d in milk (DIM). All cows were matched paired by DIM ± 14 d. The median DIM at lameness identification was 187.5 and 28.5 for cohort 1 and 2, respectively. The best performing machine learning models predicted lameness at the time of lameness with an accuracy of between 81 and 82%. Using stability selection, the prediction accuracy at the time of lameness was 80 to 81%. For samples collected before and after calving, the best performing machine learning model predicted lameness with an accuracy of 71 and 75%, respectively. The findings from this study demonstrate that untargeted LC-MS profiling combined with machine learning methods can be used to predict lameness as early as before calving and before observable changes in gait in first-lactation dairy cows. The methods also provide accuracies for detecting lameness at the time of observable changes in gait of up to 82%. The findings demonstrate that these methods could provide substantial advancements in the early prediction and prevention of lameness risk. Further external validation work is required to confirm these findings are generalizable; however, this study provides the basis from which future work can be conducted.


Asunto(s)
Enfermedades de los Bovinos , Cojera Animal , Bovinos , Animales , Femenino , Humanos , Cojera Animal/diagnóstico , Lactancia , Marcha , Leche , Enfermedades de los Bovinos/diagnóstico , Metabolómica
3.
Sci Rep ; 12(1): 3849, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264670

RESUMEN

As a global society, we have a duty to provide suitable care and conditions for farmed livestock to protect animal welfare and ensure the sustainability of our food supply. The suitability and biological impacts of housing conditions for intensively farmed animals is a complex and emotive subject, yet poorly researched, meaning quantitative evidence to inform policy and legislation is lacking. Most dairy cows globally are housed for some duration during the year, largely when climatic conditions are unfavourable. However, the impact on biology, productivity and welfare of even the most basic housing requirement, the quantity of living space, remains unknown. We conducted a long-term (1-year), randomised controlled trial (CONSORT 10 guidelines) to investigate the impact of increased living space (6.5 m2 vs 3 m2 per animal) on critical aspects of cow biology, behaviour and productivity. Adult Holstein dairy cows (n = 150) were continuously and randomly allocated to a high or control living space group with all other aspects of housing remaining identical between groups. Compared to cows in the control living space group, cows with increased space produced more milk per 305d lactation (primiparous: 12,235 L vs 11,592 L, P < 0.01; multiparous: 14,746 L vs 14,644 L, P < 0.01) but took longer to become pregnant after calving (primiparous: 155 d vs 83 d, P = 0.025; multiparous: 133 d vs 109 d). In terms of behaviour, cows with more living space spent significantly more time in lying areas (65 min/d difference; high space group: 12.43 h/day, 95% CI = 11.70-13.29; control space group: 11.42 h/day, 95% CI = 10.73-12.12) and significantly less time in passageways (64 min/d), suggesting enhanced welfare when more space was provided. A key physiological difference between groups was that cows with more space spent longer ruminating each day. This is the first long term study in dairy cows to demonstrate that increased living space results in meaningful benefits in terms of productivity and behaviour and suggests that the interplay between farmed animals and their housed environment plays an important role in the concepts of welfare and sustainability of dairy farming.


Asunto(s)
Lactancia , Leche , Animales , Bovinos , Femenino , Embarazo , Bienestar del Animal , Conducta Animal/fisiología , Industria Lechera/métodos , Lactancia/fisiología , Paridad , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA