Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1252-H1265, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517229

RESUMEN

Perivascular adipose tissue (PVAT) is increasingly recognized for its function in mechanotransduction. However, major gaps remain in our understanding of the cells present in PVAT, as well as how different cells contribute to mechanotransduction. We hypothesized that snRNA-seq would reveal the expression of mechanotransducers, and test one (PIEZO1) to illustrate the expression and functional agreement between single-nuclei RNA sequencing (snRNA-seq) and physiological measurements. To contrast two brown tissues, subscapular brown adipose tissue (BAT) was also examined. We used snRNA-seq of the thoracic aorta PVAT (taPVAT) and BAT from male Dahl salt-sensitive (Dahl SS) rats to investigate cell-specific expression mechanotransducers. Localization and function of the mechanostransducer PIEZO1 were further examined using immunohistochemistry (IHC) and RNAscope, as well as pharmacological antagonism. Approximately 30,000 nuclei from taPVAT and BAT each were characterized by snRNA-seq, identifying eight major cell types expected and one unexpected (nuclei with oligodendrocyte marker genes). Cell-specific differential gene expression analysis between taPVAT and BAT identified up to 511 genes (adipocytes) with many (≥20%) being unique to individual cell types. Piezo1 was the most highly, widely expressed mechanotransducer. The presence of PIEZO1 in the PVAT but not the adventitia was confirmed by RNAscope and IHC in male and female rats. Importantly, antagonism of PIEZO1 by GsMTX4 impaired the PVAT's ability to hold tension. Collectively, the cell compositions of taPVAT and BAT are highly similar, and PIEZO1 is likely a mechanotransducer in taPVAT.NEW & NOTEWORTHY This study describes the atlas of cells in the thoracic aorta perivascular adipose tissue (taPVAT) of the Dahl-SS rat, an important hypertension model. We show that mechanotransducers are widely expressed in these cells. Moreover, PIEZO1 expression is shown to be restricted to the taPVAT and is functionally implicated in stress relaxation. These data will serve as the foundation for future studies investigating the role of taPVAT in this model of hypertensive disease.


Asunto(s)
Tejido Adiposo Pardo , Aorta Torácica , Canales Iónicos , Mecanotransducción Celular , Proteínas de la Membrana , Ratas Endogámicas Dahl , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Masculino , Canales Iónicos/metabolismo , Canales Iónicos/genética , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo , Ratas , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/genética , Hipertensión/patología , RNA-Seq
2.
J Vasc Res ; 61(1): 26-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38113863

RESUMEN

INTRODUCTION: Tunica media extracellular matrix (ECM) remodeling is well understood to occur in response to elevated blood pressure, unlike the remodeling of other tunicas. We hypothesize that perivascular adipose tissue (PVAT) is responsive to hypertension and remodels as a protective measure. METHODS: The adventitia and PVAT of the thoracic aorta were used in measuring ECM genes from 5 pairs of Dahl SS male rats on 8 or 24 weeks of feeding from weaning on a control (10% Kcal fat) or high-fat (HF; 60%) diet. A PCR array of ECM genes was performed with cDNA from adventitia and PVAT after 8 and 24 weeks. A gene regulatory network of the differentially expressed genes (DEGs) (HF 2-fold > con) was created using Cytoscape. RESULTS: After 8 weeks, 29 adventitia but 0 PVAT DEGs were found. By contrast, at 24 weeks, PVAT possessed 47 DEGs while adventitia had 3. Top DEGs at 8 weeks in adventitia were thrombospondin 1 and collagen 8a1. At 24 weeks, thrombospondin 1 was also a top DEG in PVAT. The transcription factor Adarb1 was identified as a regulator of DEGs in 8-week adventitia and 24-week PVAT. CONCLUSION: These data support that PVAT responds biologically once blood pressure is elevated.


Asunto(s)
Dieta Alta en Grasa , Hipertensión , Ratas , Animales , Masculino , Trombospondina 1 , Presión Sanguínea , Ratas Endogámicas Dahl , Tejido Adiposo , Hipertensión/genética
3.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873456

RESUMEN

Perivascular adipose tissue (PVAT) is increasingly recognized for its function in mechanotransduction. To examine the cell-specificity of recognized mechanotransducers we used single nuclei RNA sequencing (snRNAseq) of the thoracic aorta PVAT (taPVAT) from male Dahl SS rats compared to subscapular brown adipose tissue (BAT). Approximately 30,000 nuclei from taPVAT and BAT each were characterized by snRNAseq, identifying 8 major cell types expected and one unexpected (nuclei with oligodendrocyte marker genes). Cell-specific differential gene expression analysis between taPVAT and BAT identified up to 511 genes (adipocytes) with many (≥20%) being unique to individual cell types. Piezo1 was the most highly, widely expressed mechanotransducer. Presence of PIEZO1 in the PVAT was confirmed by RNAscope® and IHC; antagonism of PIEZO1 impaired the PVAT's ability to hold tension. Collectively, the cell compositions of taPVAT and BAT are highly similar, and PIEZO1 is likely a mechanotransducer in taPVAT.

4.
Am J Physiol Heart Circ Physiol ; 325(1): H172-H186, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294893

RESUMEN

The adipokine chemerin may support blood pressure, evidenced by a fall in mean arterial pressure after whole body antisense oligonucleotide (ASO)-mediated knockdown of chemerin protein in rat models of normal and elevated blood pressure. Although the liver is the greatest contributor of circulating chemerin, liver-specific ASOs that abolished hepatic-derived chemerin did not change blood pressure. Thus, other sites must produce the chemerin that supports blood pressure. We hypothesize that the vasculature is a source of chemerin independent of the liver that supports arterial tone. RNAScope, PCR, Western blot analyses, ASOs, isometric contractility, and radiotelemetry were used in the Dahl salt-sensitive (SS) rat (male and female) on a normal diet. Retinoic acid receptor responder 2 (Rarres2) mRNA was detected in the smooth muscle, adventitia, and perivascular adipose tissue of the thoracic aorta. Chemerin protein was detected immunohistochemically in the endothelium, smooth muscle cells, adventitia, and perivascular adipose tissue. Chemerin colocalized with the vascular smooth muscle marker α-actin and the adipocyte marker perilipin. Importantly, chemerin protein in the thoracic aorta was not reduced when liver-derived chemerin was abolished by a liver-specific ASO against chemerin. Chemerin protein was similarly absent in arteries from a newly created global chemerin knockout in Dahl SS rats. Inhibition of the receptor Chemerin1 by the receptor antagonist CCX832 resulted in the loss of vascular tone that supports potential contributions of chemerin by both perivascular adipose tissue and the media. These data suggest that vessel-derived chemerin may support vascular tone locally through constitutive activation of Chemerin1. This posits chemerin as a potential therapeutic target in blood pressure regulation.NEW & NOTEWORTHY Vascular tunicas synthesizing chemerin is a new finding. Vascular chemerin is independent of hepatic-derived chemerin. Vasculature from both males and females have resident chemerin. Chemerin1 receptor activity supports vascular tone.


Asunto(s)
Vasos Sanguíneos , Quimiocinas , Animales , Ratas , Técnicas de Silenciamiento del Gen , Hígado/metabolismo , Aorta/metabolismo , Quimiocinas/análisis , Quimiocinas/metabolismo , Músculo Liso Vascular/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología
5.
Microcirculation ; 30(5-6): e12808, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37204759

RESUMEN

OBJECTIVE: Serotonin (5-HT) infusion in vivo causes hypotension and a fall in total peripheral resistance. However, the vascular segment and the receptors that mediate this response remain in question. We hypothesized that 5-HT7 receptors mediate arteriolar dilation to 5-HT in skeletal muscle microcirculation. METHODS: Cremaster muscles of isoflurane-anesthetized male Sprague-Dawley rats were prepared for in vivo microscopy of third- and fourth-order arterioles and superfused with physiological salt solution at 34°C. Quantitative real-time PCR (RT-PCR) was applied to pooled samples of first- to third-order cremaster arterioles (2-4 rats/sample) to evaluate 5-HT7 receptor expression. RESULTS: Topical 5-HT (1-10 nmols) or the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (10-30 nM), dilated third- and fourth-order arterioles, responses that were abolished by 1 µM SB269970, a selective 5-HT7 receptor antagonist. In contrast, dilation induced by the muscarinic agonist, methacholine (100 nmols) was not inhibited by SB269970. Serotonin (10 nmols) failed to dilate cremaster arterioles in 5-HT7 receptor knockout rats whereas arterioles in wild-type litter mates dilated to 1 nmol 5-HT, a response blocked by 1 µM SB269970. Quantitative RT-PCR revealed that cremaster arterioles expressed mRNA for 5-HT7 receptors. CONCLUSIONS: 5-HT7 receptors mediate dilation of small arterioles in skeletal muscle and likely contribute to 5-HT-induced hypotension, in vivo.


Asunto(s)
Serotonina , Vasodilatación , Ratas , Masculino , Animales , Serotonina/farmacología , Arteriolas/fisiología , Ratas Sprague-Dawley , Dilatación , Músculo Esquelético/irrigación sanguínea , Músculos Abdominales
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2599-2611, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37071157

RESUMEN

Our laboratory has a vested interest in measuring the location and expression of the 5-hydroxytryptamine (5-HT, serotonin) 7 (5-HT7) receptor in the rat. Determining tissue-specific receptor expression would aid in validating understood and potentially new tissues that support the 5-HT7 receptor-mediated fall in blood pressure, an event we are committed to understand. We contracted with 7TM Antibodies to develop deliberately and rigorously a rat 5-HT7 (r5-HT7) receptor specific antibody. Three antigens, two targeting the third internal loop and one the C terminus, were used in three rabbits to generate antibodies. As a positive control, HEK293(T or AD) cells were transfected with a plasmid for the r5-HT7 receptor also expressing a C terminus 3xFLAG tag. Naïve rat tissues were also used in Western and immunohistochemical analyses. Nine antibodies (3 from three different rabbits) detected a ~ 75 kDa protein absent in homogenates of vector control HEK293T cells. Only antibodies that recognized the C terminus of the 5-HT7 receptor [ERPERSEFVLQNSDH(Abu)GKKGHDT; antibodies 3, 6, and 9] positively and concentration-dependently identified the r5-HT7 receptor expressed in Westerns of transfected HEK293T cells. These same C terminus antibodies also successfully detected the r5-HT7 receptor in immunocytochemical test of the transfected HEK293AD cells, colocalizing with the detected FLAG sequence. In naive tissue, antibody 6 performed the best, identifying specific bands in the brain cortex in Western analysis. These same antibodies produced a more diverse band profile in the vena cava, identifying 6 major proteins. In immunohistochemical experiments, the same C-terminus antibodies, with antibody 3 performing the best, detected the 5-HT7 receptor in rat veins. This deliberate work has given rise to at least three antibodies that can be used with good confidence in r5-HT7 transfected cells, two antibodies that can be used in immunohistochemical analyses of rat tissues and in Westerns of rat brain; we are less confident of the use of these same antibodies in rat veins.


Asunto(s)
Receptores de Serotonina , Serotonina , Ratas , Animales , Humanos , Conejos , Células HEK293 , Receptores de Serotonina/metabolismo , Anticuerpos , Presión Sanguínea
7.
Front Endocrinol (Lausanne) ; 13: 995499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120469

RESUMEN

During hypertension, vascular remodeling allows the blood vessel to withstand mechanical forces induced by high blood pressure (BP). This process is well characterized in the media and intima layers of the vessel but not in the perivascular adipose tissue (PVAT). In PVAT, there is evidence for fibrosis development during hypertension; however, PVAT remodeling is poorly understood. In non-PVAT depots, mechanical forces can affect adipogenesis and lipogenic stages in preadipocytes. In tissues exposed to high magnitudes of pressure like bone, the activation of the mechanosensor PIEZO1 induces differentiation of progenitor cells towards osteogenic lineages. PVAT's anatomical location continuously exposes it to forces generated by blood flow that could affect adipogenesis in normotensive and hypertensive states. In this study, we hypothesize that activation of PIEZO1 reduces adipogenesis in PVAT preadipocytes. The hypothesis was tested using pharmacological and mechanical activation of PIEZO1. Thoracic aorta PVAT (APVAT) was collected from 10-wk old male SD rats (n=15) to harvest preadipocytes that were differentiated to adipocytes in the presence of the PIEZO1 agonist Yoda1 (10 µM). Mechanical stretch was applied with the FlexCell System at 12% elongation, half-sine at 1 Hz simultaneously during the 4 d of adipogenesis (MS+, mechanical force applied; MS-, no mechanical force used). Yoda1 reduced adipogenesis by 33% compared with CON and, as expected, increased cytoplasmic Ca2+ flux. MS+ reduced adipogenesis efficiency compared with MS-. When Piezo1 expression was blocked with siRNA [siPiezo1; NC=non-coding siRNA], the anti-adipogenic effect of Yoda1 was reversed in siPiezo1 cells but not in NC; in contrast, siPiezo1 did not alter the inhibitory effect of MS+ on adipogenesis. These data demonstrate that PIEZO1 activation in PVAT reduces adipogenesis and lipogenesis and provides initial evidence for an adaptive response to excessive mechanical forces in PVAT during hypertension.


Asunto(s)
Adipogénesis , Hipertensión , Tejido Adiposo/metabolismo , Animales , Calcio/metabolismo , Masculino , Mecanorreceptores/metabolismo , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley
8.
J Cardiovasc Pharmacol ; 80(2): 314-322, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35939654

RESUMEN

ABSTRACT: The 5-hydroxytryptamine 7 (5-HT 7 ) receptor is reported to have considerable constitutive activity when transfected into cells. Constitutive activity-receptor activity in the absence of known agonist-is important for understanding the contributions of a receptor to (patho)physiology. We test the hypothesis that the 5-HT 7 receptor possesses constitutive activity in a physiological situation. Isolated veins from male and female Sprague Dawley rats were used as models for measuring isometric force; the abdominal vena cava possesses a functional 5-HT 7 receptor that mediates relaxation, whereas the small mesenteric vein does not. Compounds reported to act as inverse agonists were investigated for their ability to cause contraction (moving a constitutively active relaxant receptor to an inactive state, removing relaxation). Compared with a vehicle control, clozapine, risperidone, ketanserin, and SB269970 caused no contraction in the isolated male abdominal vena cava. By contrast, methiothepin caused a concentration-dependent contraction of the male but not female abdominal vena cava, although with low potency (-log EC 50 [M] = 5.50 ± 0.45) and efficacy (∼12% of contraction to endothelin-1). Methiothepin-induced contraction was not reduced by the 5-HT 7 receptor antagonist (SB269970, 1 µM, not active in the vena cava). These same compounds showed little to no effect in the isolated mesenteric vein. We conclude that the 5-HT 7 receptor in the isolated veins of the Sprague Dawley rat does not possess constitutive activity. We raise the question of the physiological relevance of constitutive activity of this receptor important to such diverse physiological functions as sleep, circadian rhythm, temperature, and blood pressure regulation.


Asunto(s)
Antagonistas de la Serotonina , Serotonina , Animales , Presión Sanguínea , Masculino , Metiotepina/farmacología , Ratas , Ratas Sprague-Dawley , Serotonina/farmacología , Antagonistas de la Serotonina/farmacología , Vasoconstricción
9.
Pharmacol Res ; 175: 105995, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818570

RESUMEN

The vasculature constantly experiences distension/pressure exerted by blood flow and responds to maintain homeostasis. We hypothesized that activation of the stretch sensitive, non-selective cation channel Piezo1 would directly increase vascular contraction in a way that might be modified by perivascular adipose tissue (PVAT). The presence and function of Piezo1 was investigated by RT-PCR, immunohistochemistry, and isolated tissue bath contractility. Superior and mesenteric resistance arteries, aortae, and their PVATs from male Sprague Dawley rats were used. Piezo1 mRNA was detected in aortic vessels, aortic PVAT, mesenteric vessels, and mesenteric PVAT. Both adipocytes and stromal vascular fraction of mesenteric PVAT expressed Piezo1 mRNA. In PVAT, expression of Piezo1 mRNA was greater in magnitude than that of Piezo2, transient receptor potential cation channel, subfamily V, member 4 (TRPV4), anoctamin 1, calcium activated chloride channel (TMEM16), and Pannexin1 (Panx1). Piezo1 protein was present in endothelium and PVAT of rat aortic and in PVAT of mesenteric artery. The Piezo1 agonists Yoda1 and Jedi2 (1 nM - 10 µM) did not stimulate aortic contraction [max < 10% phenylephrine (PE) 10 µM contraction] or relaxation in tissues + or -PVAT. Depolarizing the aorta by modestly elevated extracellular K+ did not unmask aortic contraction to Yoda1 (max <10% PE 10 µM contraction). Finally, the Piezo1 antagonist Dooku1 did not modify PE-induced aorta contraction + or -PVAT. Surprisingly, Dooku1 directly caused aortic contraction in the absence (Dooku1 =26 ± 11; Vehicle = 11 ± 11%PE contraction) but not in the presence of PVAT (Dooku1 = 2 ± 1; Vehicle = 8 ± 5% PE contraction). Thus, Piezo1 is present and functional in the isolated rat aorta but does not serve direct vascular contraction with or without PVAT. We reaffirmed the isolated mouse aorta relaxation to Yoda1, indicating a species difference in Piezo1 activity between mouse and rat.


Asunto(s)
Aorta Torácica/fisiología , Proteínas de la Membrana/fisiología , Arterias Mesentéricas/fisiología , Tejido Adiposo/fisiología , Animales , Aorta Torácica/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Arterias Mesentéricas/metabolismo , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Vasoconstricción
10.
J Cardiovasc Pharmacol ; 78(2): 319-327, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34029269

RESUMEN

ABSTRACT: Although discovered as a vasoconstrictor, 5-hydroxytryptamine (5-HT, serotonin) infused into man and rodent reduces blood pressure. This occurs primarily through activation of 5-HT7 receptors and, at least in part, venodilation. Vascular mechanisms by which this could occur include direct receptor activation leading to vasodilation and/or suppression of contractile 5-HT receptor activation. This study tests the hypothesis that the 5-HT7 receptor restrains activation of the 5-HT2A receptor. A subhypothesis is whether agonist-induced activation-independent of constitutive activity-of the 5-HT7 receptor is necessary for this restraint. The isolated abdominal aorta and vena cava from the normal male Sprague-Dawley rat was our model. Studies used real-time PCR and a pharmacological approach in the isolated tissue bath for measurement of isometric tone. Although 5-HT2A receptor mRNA expression in both aorta and vena cava was significantly larger than that of the 5-HT7 receptor mRNA, the 5-HT7/5-HT2A receptor mRNA ratio was greater in the vena cava (0.30) than in the aorta (0.067). 5-HT7 receptor antagonism by SB266970 and DR 4458 increased maximum contraction to 5-HT in the isolated vein by over 50% versus control. The 5-HT2A receptor agonists TCB-2 and NBOH were more potent in the aorta compared with 5-HT but less efficacious, serving as partial agonists. By contrast, these same three agonists caused no contraction in the vena cava isolated from the same rats up to 10 µM agonist. Antagonism of the 5-HT7 receptor by SB269970 did not increase either the potency or efficacy of TCB-2 or NBOH. These data support that the 5-HT7 receptor itself needs to be stimulated to reduce contraction and suggest there is little constitutive activity of the 5-HT7 receptor in the isolate abdominal vena cava.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Serotonina/farmacología , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vena Cava Inferior/efectos de los fármacos , Animales , Aorta Abdominal/metabolismo , Técnicas In Vitro , Masculino , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Vena Cava Inferior/metabolismo
11.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33808023

RESUMEN

Transglutaminases (TGs) are crosslinking enzymes best known for their vascular remodeling in hypertension. They require calcium to form an isopeptide bond, connecting a glutamine to a protein bound lysine residue or a free amine donor such as norepinephrine (NE) or serotonin (5-HT). We discovered that perivascular adipose tissue (PVAT) contains significant amounts of these amines, making PVAT an ideal model to test interactions of amines and TGs. We hypothesized that transglutaminases are active in PVAT. Real time RT-PCR determined that Sprague Dawley rat aortic, superior mesenteric artery (SMA), and mesenteric resistance vessel (MR) PVATs express TG2 and blood coagulation Factor-XIII (FXIII) mRNA. Consistent with this, immunohistochemical analyses support that these PVATs all express TG2 and FXIII protein. The activity of TG2 and FXIII was investigated in tissue sections using substrate peptides that label active TGs when in a catalyzing calcium solution. Both TG2 and FXIII were active in rat aortic PVAT, SMAPVAT, and MRPVAT. Western blot analysis determined that the known TG inhibitor cystamine reduced incorporation of experimentally added amine donor 5-(biotinamido)pentylamine (BAP) into MRPVAT. Finally, experimentally added NE competitively inhibited incorporation of BAP into MRPVAT adipocytes. Further studies to determine the identity of amidated proteins will give insight into how these enzymes contribute to functions of PVAT and, ultimately, blood pressure.


Asunto(s)
Adipocitos/enzimología , Tejido Adiposo/enzimología , Aorta/enzimología , Factor XIII/biosíntesis , Arteria Mesentérica Superior/enzimología , Transglutaminasas/biosíntesis , Animales , Masculino , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratas , Ratas Sprague-Dawley
12.
Physiol Genomics ; 51(7): 290-301, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31125290

RESUMEN

Using CRISPR-Cas9 technology, we created a 5-HT7 receptor global knockout (KO) rat, on a Sprague-Dawley background, for use in cardiovascular physiology studies focused on blood pressure regulation. A stable line carrying indels in exons 1 and 2 of the rat Htr7 locus was established and validated. Surprisingly, 5-HT7 receptor mRNA was still present in the KO rat. However, extensive cDNA and genomic sequencing of KO tissues confirmed an 11 bp deletion in exon 1 and 4 bp deletion in exon 2. The exon 1 deletion resulted in a frameshifted mRNA sequence coding for a nonfunctional protein. While the Htr1B locus was a potential off-target for the guide RNAs designed for exon 2 of Htr7, there were no off-target sequence changes at this locus in the originating founder. When the F2 generation of KO was compared with wild-type (WT) counterparts, neither the male nor female KO rats were different in body size, fat weights, or mass of organs (kidney, heart, and brain) important to blood pressure. Females were smaller in mass than their counterpart males. Clinical measures of plasma from nonfasted rats revealed largely similar values, comparing WT and KO, of glucose, blood urea nitrogen, creatinine, phosphate, calcium, and albumin to name a few. Loss of a functional 5-HT7 receptor was validated by the complete loss of relaxation to the 5-HT1/7 receptor agonist 5-carboxamidotryptamine in the isolated abdominal vena cava. This newly created 5-HT7 receptor KO rat will be of use to investigate the importance of the 5-HT7 receptor in blood pressure regulation.


Asunto(s)
Animales Modificados Genéticamente , Enfermedades Cardiovasculares/genética , Técnicas de Inactivación de Genes , Receptores de Serotonina/genética , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal/genética , Sistemas CRISPR-Cas , Sistema Cardiovascular/metabolismo , Exones , Femenino , Mutación del Sistema de Lectura , Eliminación de Gen , Genotipo , Masculino , Ratas , Ratas Sprague-Dawley , Serotonina/farmacología
13.
Pharmacol Res ; 140: 43-49, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30189295

RESUMEN

Perivascular adipose tissue (PVAT) modulates vascular tone and altered PVAT function is observed in vascular diseases such as hypertension and atherosclerosis. We discovered that the PVAT surrounding rat thoracic aorta (RA) and the superior mesenteric artery (SMA) contain significant amounts of 5-hydroxytryptamine (5-HT). We hypothesized that the 5-HT contained within the PVAT is functional and vasoactive. Isolated tissue baths were used for isometric contractility studies and high performance liquid chromatography was used to quantitatively measure amines in the PVAT and release studies. The 5-HT releaser fenfluramine (10 nM-100 µM) was tested for its ability to contract arteries with and without PVAT. Contraction was reported as a percentage of the initial contraction to 10 µM phenylephrine. The RA with PVAT contracted to fenfluramine to a greater maximum (98 ± 10%) than RA without PVAT (24 ± 4%), while no difference in contraction of SMA to maximum fenfluramine with (78 ± 2%) and without (75 ± 6%) PVAT was observed. Contradicting our hypothesis, the maximum contraction of RA with PVAT to fenfluramine was diminished by the alpha-1 adrenoreceptor antagonist prazosin (100 nM; vehicle: 71 ± 4%, prazosin: 24 ± 2%) and the norepinephrine transporter (NET) inhibitor nisoxetine (1 µM; vehicle: 71 ± 4%, nisoxetine: 25 ± 4%) but not the 5-HT2A/2C receptor antagonist ketanserin (10 nM) or serotonin specific reuptake inhibitor fluoxetine (10 µM). To test if fenfluramine caused release of 5-HT or NE from PVAT, PVAT from RA was incubated with vehicle or fenfluramine (10 µM-10 mM), and amines released into the incubating buffer were quantified. A pronounced concentration-dependent NE-release (more than 5-HT) was observed. Collectively, this research illustrates the pharmacology of fenfluramine to primarily stimulate NE release (better than 5-HT) in a NET-dependent manner, leading to vasoconstriction. This adds additional support to PVAT as being an important reservoir of amines.


Asunto(s)
Tejido Adiposo/fisiología , Aorta Torácica/efectos de los fármacos , Fenfluramina/farmacología , Norepinefrina/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Aorta Torácica/fisiología , Masculino , Ratas Sprague-Dawley , Serotonina/fisiología , Vasoconstricción/efectos de los fármacos
14.
J Pharmacol Exp Ther ; 365(2): 212-218, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29467310

RESUMEN

Chemerin is an inflammatory adipokine positively associated with hypertension and obesity. The majority of chemerin derives from the liver and adipose tissue, however, their individual contributions to blood pressure are unknown. We began studying chemerin in the normal rat using antisense oligonucleotides (ASO) with whole-body activity (Gen 2.5 chemerin ASO) or liver-restricted activity (GalNAc chemerin ASO). We hypothesized that in normotensive male Sprague-Dawley rats, circulating chemerin is predominately liver-derived and regulates blood pressure. A dosing study of the Gen 2.5 chemerin ASO (with a scrambled control ASO) supported 25 mg/kg as the appropriate dose. GalNAc chemerin ASO was also assessed and used at 10 mg/kg. Radiotelemetry monitored mean arterial pressure (MAP) for a 1-week baseline and weekly subcutaneous ASO injections for 4 weeks. Two days after the final injection, animals were euthanized for tissue reverse transcription-polymerase chain reaction and chemerin Western analysis. Gen 2.5 chemerin ASO treatments reduced chemerin mRNA and protein in liver, retroperitoneal fat (RP), and mesenteric perivascular adipose tissue (mPVAT), as well as reducing protein in plasma. GalNAc chemerin ASO treatments reduced chemerin mRNA and protein in liver and chemerin protein in plasma but had no effect on expression in RP fat or mPVAT. Gen 2.5 chemerin ASO treatment reduced MAP compared with control ASO but was unchanged in animals receiving the GalNAc chemerin ASO. Although circulating chemerin is liver-derived, it does not play a major role in blood pressure regulation. Local effects of chemerin from fat may explain this discrepancy and support chemerin's association with hypertension and obesity.


Asunto(s)
Presión Sanguínea/genética , Quimiocinas/deficiencia , Quimiocinas/genética , Técnicas de Silenciamiento del Gen , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Hígado/metabolismo , Oligonucleótidos Antisentido/genética , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
15.
Am J Physiol Heart Circ Physiol ; 313(3): H676-H686, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626072

RESUMEN

Serotonin [5-hydroxytryptamine (5-HT)] causes relaxation of the isolated superior mesenteric vein, a splanchnic blood vessel, through activation of the 5-HT7 receptor. As part of studies designed to identify the mechanism(s) through which chronic (≥24 h) infusion of 5-HT lowers blood pressure, we tested the hypothesis that 5-HT causes in vitro and in vivo splanchnic venodilation that is 5-HT7 receptor dependent. In tissue baths for measurement of isometric contraction, the portal vein and abdominal inferior vena cava relaxed to 5-HT and the 5-HT1/7 receptor agonist 5-carboxamidotryptamine; relaxation was abolished by the 5-HT7 receptor antagonist SB-269970. Western blot analyses showed that the abdominal inferior vena cava and portal vein express 5-HT7 receptor protein. In contrast, the thoracic vena cava, outside the splanchnic circulation, did not relax to serotonergic agonists and exhibited minimal expression of the 5-HT7 receptor. Male Sprague-Dawley rats with chronically implanted radiotelemetry transmitters underwent repeated ultrasound imaging of abdominal vessels. After baseline imaging, minipumps containing vehicle (saline) or 5-HT (25 µg·kg-1·min-1) were implanted. Twenty-four hours later, venous diameters were increased in rats with 5-HT-infusion (percent increase from baseline: superior mesenteric vein, 17.5 ± 1.9; portal vein, 17.7 ± 1.8; and abdominal inferior vena cava, 46.9 ± 8.0) while arterial pressure was decreased (~13 mmHg). Measures returned to baseline after infusion termination. In a separate group of animals, treatment with SB-269970 (3 mg/kg iv) prevented the splanchnic venodilation and fall in blood pressure during 24 h of 5-HT infusion. Thus, 5-HT causes 5-HT7 receptor-dependent splanchnic venous dilation associated with a fall in blood pressure.NEW & NOTEWORTHY This research is noteworthy because it combines and links, through the 5-HT7 receptor, an in vitro observation (venorelaxation) with in vivo events (venodilation and fall in blood pressure). This supports the idea that splanchnic venodilation plays a role in blood pressure regulation.


Asunto(s)
Venas Mesentéricas/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Serotonina/farmacología , Circulación Esplácnica/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Presión Arterial/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Infusiones Intravenosas , Masculino , Venas Mesentéricas/diagnóstico por imagen , Venas Mesentéricas/metabolismo , Vena Porta/efectos de los fármacos , Vena Porta/metabolismo , Ratas Sprague-Dawley , Receptores de Serotonina/metabolismo , Serotonina/administración & dosificación , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/administración & dosificación , Telemetría , Factores de Tiempo , Ultrasonografía , Vasodilatadores/administración & dosificación , Vena Cava Inferior/efectos de los fármacos , Vena Cava Inferior/metabolismo
16.
Front Physiol ; 8: 37, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28228728

RESUMEN

Background: Perivascular adipose tissue (PVAT) can decrease vascular contraction to NE. We tested the hypothesis that metabolism and/or uptake of vasoactive amines by mesenteric PVAT (MPVAT) could affect NE-induced contraction of the mesenteric resistance arteries. Methods: Mesenteric resistance vessels (MRV) and MPVAT from male Sprague-Dawley rats were used. RT-PCR and Western blots were performed to detect amine metabolizing enzymes. The Amplex® Red Assay was used to quantify oxidase activity by detecting the oxidase reaction product H2O2 and the contribution of PVAT on the mesenteric arteries' contraction to NE was measured by myography. Results: Semicarbazide sensitive amine oxidase (SSAO) and monoamine oxidase A (MAO-A) were detected in MRV and MPVAT by Western blot. Addition of the amine oxidase substrates tyramine or benzylamine (1 mM) resulted in higher amine oxidase activity in the MRV, MPVAT, MPVAT's adipocyte fraction (AF), and the stromal vascular fraction (SVF). Inhibiting SSAO with semicarbazide (1 mM) decreased amine oxidase activity in the MPVAT and AF. Benzylamine-driven, but not tyramine-driven, oxidase activity in the MRV was reduced by semicarbazide. By contrast, no reduction in oxidase activity in all sample types was observed with use of the monoamine oxidase inhibitors clorgyline (1 µM) or pargyline (1 µM). Inhibition of MAO-A/B or SSAO individually did not alter contraction to NE. However, inhibition of both MAO and SSAO increased the potency of NE at mesenteric arteries with PVAT. Addition of MAO and SSAO inhibitors along with the H2O2 scavenger catalase reduced PVAT's anti-contractile effect to NE. Inhibition of the norepinephrine transporter (NET) with nisoxetine also reduced PVAT's anti-contractile effect to NE. Conclusions: PVAT's uptake and metabolism of NE may contribute to the anti-contractile effect of PVAT. MPVAT and adipocytes within MPVAT are a source of SSAO.

17.
Vascul Pharmacol ; 88: 30-41, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27890480

RESUMEN

Chemerin is an adipokine associated with increased blood pressure, and may link obesity with hypertension. We tested the hypothesis that chemerin-induced contraction of the vasculature occurs via calcium flux in smooth muscle cells. Isometric contraction of rat aortic rings was performed in parallel with calcium kinetics of rat aortic smooth muscle cells to assess the possible signaling pathway. Chemerin-9 (nonapeptide of the chemerin S157 isoform) caused a concentration-dependent contraction of isolated aorta (EC50 100nM) and elicited a concentration-dependent intracellular calcium response (EC50 10nM). Pertussis toxin (Gi inhibitor), verapamil (L-type Ca2+ channel inhibitor), PP1 (Src inhibitor), and Y27632 (Rho kinase inhibitor) reduced both calcium influx and isometric contraction to chemerin-9 but PD098059 (Erk MAPK inhibitor) and U73122 (PLC inhibitor) had little to no effect on either measure of chemerin signaling. Although our primary aim was to examine chemerin signaling, we also highlight differences in the mechanisms of chemerin-9 and recombinant chemerin S157. These data support a chemerin-induced contractile mechanism in vascular smooth muscle that functions through Gi proteins to activate L-type Ca2+ channels, Src, and Rho kinase. There is mounting evidence linking chemerin to hypertension and this mechanism brings us closer to targeting chemerin as a form of therapy.


Asunto(s)
Aorta/metabolismo , Calcio/metabolismo , Quimiocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Aorta/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Quimiocinas/administración & dosificación , Relación Dosis-Respuesta a Droga , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Hipertensión/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 309(11): H1904-14, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26432838

RESUMEN

Perivascular adipose tissue (PVAT) reduces vasoconstriction to norepinephrine (NE). A mechanism by which PVAT could function to reduce vascular contraction is by decreasing the amount of NE to which the vessel is exposed. PVATs from male Sprague-Dawley rats were used to test the hypothesis that PVAT has a NE uptake mechanism. NE was detected by HPLC in mesenteric PVAT and isolated adipocytes. Uptake of NE (10 µM) in mesenteric PVAT was reduced by the NE transporter (NET) inhibitor nisoxetine (1 µM, 73.68 ± 7.62%, all values reported as percentages of vehicle), the 5-hydroxytryptamine transporter (SERT) inhibitor citalopram (100 nM) with the organic cation transporter 3 (OCT3) inhibitor corticosterone (100 µM, 56.18 ± 5.21%), and the NET inhibitor desipramine (10 µM) with corticosterone (100 µM, 61.18 ± 6.82%). Aortic PVAT NE uptake was reduced by corticosterone (100 µM, 53.01 ± 10.96%). Confocal imaging of mesenteric PVAT stained with 4-[4-(dimethylamino)-styrl]-N-methylpyridinium iodide (ASP(+)), a fluorescent substrate of cationic transporters, detected ASP(+) uptake into adipocytes. ASP(+) (2 µM) uptake was reduced by citalopram (100 nM, 66.68 ± 6.43%), corticosterone (100 µM, 43.49 ± 10.17%), nisoxetine (100 nM, 84.12 ± 4.24%), citalopram with corticosterone (100 nM and 100 µM, respectively, 35.75 ± 4.21%), and desipramine with corticosterone (10 and 100 µM, respectively, 50.47 ± 5.78%). NET protein was not detected in mesenteric PVAT adipocytes. Expression of Slc22a3 (OCT3 gene) mRNA and protein in PVAT adipocytes was detected by RT-PCR and immunocytochemistry, respectively. These end points support the presence of a transporter-mediated NE uptake system within PVAT with a potential mediator being OCT3.


Asunto(s)
Adipocitos/metabolismo , Grasa Intraabdominal/metabolismo , Norepinefrina/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Adipocitos/efectos de los fármacos , Inhibidores de Captación Adrenérgica/farmacología , Animales , Aorta Torácica , Transporte Biológico , Cromatografía Líquida de Alta Presión , Corticosterona/farmacología , Inmunohistoquímica , Grasa Intraabdominal/efectos de los fármacos , Masculino , Arterias Mesentéricas , Microscopía Confocal , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Pharmacol Res Perspect ; 3(1): e00103, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25692021

RESUMEN

Serotonin (5-HT, 5-hydroxytryptamine) reduces blood pressure of the conscious rat when administered chronically (1 week). 5-HT does not directly relax isolated arteries, and microsphere experiments in 5-HT-infused rats suggested that 5-HT increased flow to the splanchnic bed. We hypothesized that 5-HT increased splanchnic flow because of direct venous relaxation; our focus was thus on the superior mesenteric vein (SMV) as an important vein in splanchnic circulation. Real-time RT-PCR, immunohistochemistry and Western analyses supported the predominant expression of the 5-HT2B and 5-HT7 receptor in the SMV. The SMV was mounted in tissue baths for measurement of isometric contraction. 5-HT caused a concentration-dependent relaxation of the endothelin-1 (ET-1)-contracted vein. The threshold of 5-HT-induced venous relaxation was significantly lower than for 5-HT-induced venous contraction (∼2 vs. 700 nmol/L, respectively). A series of serotonergic agonists established in their use of receptor characterization was tested, and the following rank order of potency found for agonist-induced relaxation (receptor selectivity): 5-CT (5-HT1/5-HT7)>5-HT = LP-44 (5-HT7)>PNU109291 (5-HT1D) = BW723C86 (5-HT2B). 8-OH-DPAT (5-HT1A/7), CP93129 (5-HT1B), mCPBG (5-HT3/4), AS19 (5-HT7) and TCB-2 (5-HT2A) did not relax the isolated vein. Consistent with these findings, two different 5-HT7 receptor antagonists SB 269970 and LY215840 but not the 5-HT2B receptor antagonist LY272015 nor the nitric oxide synthase inhibitor LNNA abolished 5-CT-induced relaxation of the isolated SMV. 5-CT (1 µg kg(-1) min(-1), sc) also reduced blood pressure over 7 days. These findings suggest that 5-HT directly relaxes the SMV primarily through activation of the 5-HT7 receptor.

20.
Am J Physiol Heart Circ Physiol ; 308(6): H592-602, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25599570

RESUMEN

Transglutaminases (TGs) catalyze the formation of covalent cross-links between glutamine residues and amine groups. This cross-linking activity has been implicated in arterial remodeling. Because hypertension is characterized by arterial remodeling, we hypothesized that TG activity, expression, and functionality would be increased in the aorta, but not in the vena cava (which does not undergo remodeling), from hypertensive rats relative to normotensive rats. Spontaneously hypertensive stroke-prone rats (SHRSP) and DOCA-salt rats as well as their respective normotensive Wistar-Kyoto or Sprague-Dawley counterparts were used. Immunohistochemistry and Western blot analysis measured the presence and expression of TG1 and TG2, in situ activity assays quantified active TGs, and isometric contractility was used to measure TG functionality. Contrary to our hypothesis, the activity (52% DOCA-salt vs. control rats and 56% SHRSP vs. control rats, P < 0.05), expression (TG1: 54% DOCA-salt vs. control rats, P > 0.05, and TG2: 77% DOCA-salt vs. control rats, P < 0.05), and functionality of TG1 and TG2 were decreased in the aorta, but not in the vena cava, from hypertensive rats. Mass spectrometry identified proteins uniquely amidated by TGs in the aorta that play roles in cytoskeletal regulation, redox regulation, and DNA/RNA/protein synthesis and regulation and in the vena cava that play roles in cytoskeletal regulation, coagulation regulation, and cell metabolism. Consistent with the idea that growing cells lose TG2 expression, vascular smooth muscle cells placed in culture lost TG2 expression. We conclude that the expression, activity, and functionality of TG1 and TG2 are decreased in the aorta, but not in the vena cava, from hypertensive rats compared with control rats.


Asunto(s)
Aorta Torácica/enzimología , Proteínas de Unión al GTP/metabolismo , Hipertensión/enzimología , Transglutaminasas/metabolismo , Remodelación Vascular , Animales , Aorta Torácica/fisiopatología , Células Cultivadas , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hipertensión/etiología , Hipertensión/fisiopatología , Masculino , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/enzimología , Nefrectomía , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Sprague-Dawley , Vasoconstricción , Vena Cava Inferior/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...