Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Environ Pollut ; 348: 123806, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493865

RESUMEN

The release of microfibres from fabrics during laundering represents an important source of plastic and natural microfibres to aquatic environments. Garment age - how long the garment has been used - could be a key factor influencing the rate of release, yet most studies of microfibre shedding have only assessed newly manufactured products. To this end, we quantified microfibre release during laundering in domestic washing machines from polyester (PES) and cotton garments (n = 38) used in real-life conditions for periods between 1 and 31 years with different use intensities. In addition, to better understand the factors involved in microfibre releases, fibre composition (different PES percentages) and type of garments (T-shirts, polo shirts, uniforms, sports shirts, and sweatshirts) were examined. All garments released microfibres during washing, while the older garments presented higher releases for clothing with a PES/cotton blend. In general, older garments (15-31 years) released nearly twice as many fibres when washed than newer garments (1-10 years). The mass of microfibres released was consistently greater in garments with a higher proportion of cotton than PES (up to 1.774 mg g-1 in 2% PES and 0.366 mg g-1 in 100% PES fabrics), suggesting that cotton might be released more readily such that the relative proportion of PES in the garments could increase over time. Additionally, SEM images showed fibre damage, with fibres from the older garments exhibiting more peeling and splitting. While it is important to note that the overall environmental footprint is undoubtedly reduced by keeping garments in use for longer periods of time, older garments were shown to release more microfibres.


Asunto(s)
Lavandería , Poliésteres , Textiles , Lavandería/métodos , Vestuario
2.
Environ Sci Pollut Res Int ; 31(18): 26675-26685, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451457

RESUMEN

The environmental accumulation of microplastics poses a formidable global challenge, with tyre wear particles (TWPs) emerging as major and potentially harmful contributors to this particulate pollution. A critical pathway for TWPs to aquatic environments is via road drainage. While drainage assets are employed worldwide, their effectiveness in retaining microplastics of highly variable densities (TWP ~ 1-2.5 g cm3) remains unknown. This study examines their ability to impede the transfer of TWPs from the UK Strategic Road Network (SRN) to aquatic ecosystems. Samples were collected from the influent, effluent and sediments of three retention ponds and three wetlands. The rate of TWP generation is known to vary in response to vehicle speed and direction. To ascertain the significance of this variability, we further compared the mass of TWPs in drainage from curved and straight sections of the SRN across eight drainage outfalls. Pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) was used to quantify tyre wear using benzothiazole as a molecular marker for TWPs (with an internal standard benzothiazole-D4). Tyre wear was present in drainage from the SRN at concentrations of 2.86 ± 6 mg/L and was found within every sample analysed. Drainage from curved sections of the SRN contained on average a 40% greater TWP mass than straight sections but this was not significant. The presence of wetlands and retention ponds generally led to a reduction in TWP mass (74.9% ± 8.2). This effect was significant for retention ponds but not for wetlands; most probably due to variability among sites and sampling occasions. Similar drainage assets are used on a global scale; hence our results are of broad relevance to the management of TWP pollution.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Humedales
4.
Chemosphere ; 341: 140058, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37673182

RESUMEN

Assessing the dietary accumulation of nanoplastics in animals following very-low exposure concentrations is restricted due to analytical limitations. This study adapted a method for synthesising semi-stable 14C-PS NPs (through styrene polymerisation) in small volumes for deployment in environmental studies. The method was developed with non-labelled material where the final polystyrene product had a primary particle size of 35 ± 8 nm (as measured by transmission electron microscopy). This method was then applied to 14C-labelled styrene to produce radiolabelled polystyrene nanoplastics (14C-PS NPs). The 14C-PS NPs were added (top-dressed) to a commercially available fish feed, with a measured concentration of 27.9 ± 2.1 kBq kg-1 (n = 5), equating to 5.9 µg polystyrene kg-1 feed. Fish (rainbow trout; Oncorhynchus mykiss) were fed this diet at a ration of 2% body weight per day for a period of two weeks. On day 3, 7 and 14, the fish were sampled for the mid intestine, hind intestine, kidney and liver, and measured for tissue radioactivity (determined by liquid scintillation counting). Some background activity was detected in the control samples (e.g., 1-16 and 4-11 Bq g-1 in the hind intestine and liver, respectively) which is due to natural background fluorescence. By the end of the experiment, the hind intestine and liver had significantly elevated radioactivity (25.3 and 15.0 Bq g-1, respectively) compared to the control, indicating the accumulation of nano polystyrene. In the liver, this equated to 1.8 µg polystyrene g-1 dry weight. This study confirms the accumulation of nano particles in vertebrates at low, environmentally relevant concentration, and highlights radiolabelling as a methodological approach suitable for exploring the bioaccumulation of nanoplastics and potential impacts.

6.
Sci Total Environ ; 901: 166640, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37647965

RESUMEN

Rivers are key pathways for the transfer of microplastics (MP) to marine environments. However, there are considerable uncertainties about the amount of microplastics transported by rivers to the ocean; this results in inaccuracies in our understanding of microplastic quantity and transport by freshwater systems. Additionally, it has been suggested that rivers may represent long-term sinks, with microplastics accumulating in sediment due to their high density or other biological, chemical, and physical factors. The atmosphere is also an important pathway by which airborne microplastics may enter aquatic habitats. Here, we compare for first time microplastics type and concentration in these key environmental mediums (air, water and sediment) along a major river (Ganges), from sea to source to understand 1) the abundance, 2) the spatial distribution, and 3) characteristics. Mean microplastic abundance settling from the atmosphere was 41.12 MP m2 day-1; while concentrations in sediment were 57.00 MP kg-1 and in water were 0.05 MP L-1. Across all sites and environmental mediums, rayon (synthetically altered cellulose) was the dominant polymer (54-82 %), followed by acrylic (6-23 %) and polyester (9-17 %). Fibres were the dominant shape (95-99 %) and blue was the most common colour (48-79 %). Across water and sediment environmental mediums, the number of microplastics per sample increased from the source of the Ganges to the sea. Additionally, higher population densities correlated with increased microplastic abundance for air and water samples. We suggest that clothing is likely to be the prominent source of microplastics to the river system, influenced by atmospheric deposition, wastewater and direct input (e.g. handwashing of clothes in the Ganges), especially in high density population areas. However, we suggest that subsequent microplastic release to the marine environment is strongly influenced by polymer type and shape, with a large proportion of denser microplastics settling in sediment prior to the river discharging to the ocean.

7.
Sci Total Environ ; 895: 164958, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331387

RESUMEN

Worldwide, natural habitats are being replaced by artificial structures due to urbanisation. Planning of such modifications should strive for environmental net gain that benefits biodiversity and ecosystems. Alpha (α) and gamma (γ) diversity are often used to assess 'impact' but are insensitive metrics. We test several diversity measures across two spatial scales to compare species diversity in natural and artificial habitats. We show γ-diversity indicates equivalency in biodiversity between natural and artificial habitats, but natural habitats support greater taxon (α) and functional richness. Within-site ß-diversity was also greater in natural habitats, but among-site ß-diversity was greater in artificial habitats, contradicting the commonly held view that urban ecosystems are more biologically homogenous than natural ecosystems. This study suggests artificial habitats may in fact provide novel habitat for biodiversity, challenges the applicability of the urban homogenisation concept and highlights a significant limitation of using just α-diversity (i.e., multiple metrics are needed and recommended) for assessing environmental net gain and attaining biodiversity conservation goals.


Asunto(s)
Benchmarking , Ecosistema , Biodiversidad , Urbanización
8.
Ann Glob Health ; 89(1): 23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969097

RESUMEN

Background: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals: The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure: This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics: Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle: The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings: Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings: Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings: Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbonmetric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings: The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions: It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations: To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary: This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.


Asunto(s)
Enfermedades Cardiovasculares , Disruptores Endocrinos , Retardadores de Llama , Gases de Efecto Invernadero , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Estados Unidos , Niño , Animales , Humanos , Masculino , Femenino , Preescolar , Plásticos/toxicidad , Plásticos/química , Ecosistema , Mónaco , Microplásticos , Contaminantes Orgánicos Persistentes , Disruptores Endocrinos/toxicidad , Carbón Mineral
10.
Sci Total Environ ; 854: 158765, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113800

RESUMEN

The ingestion of nanoplastics (NPs) by fish has led to concerns regarding fish health and food chain transfer, but analytical constraints have hindered quantitative data collection on their uptake and depuration. We used palladium-doped polystyrene nanoplastics (PS-Pd NPs, ~200 nm) to track particle fate in rainbow trout (Oncorhynchus mykiss) during a week-long dietary exposure and subsequent 7-day depuration period on a control diet (no added PS-Pd NPs). At Day 3 and 7 of the exposure, and after depuration, the mid intestine, hind intestine, liver, gallbladder, kidney, gill and carcass were sampled. All organs and the carcass were analysed for total Pd content by inductively couple plasma mass spectrometry. After 3 days of exposure, the mid (32.5 ± 8.3 ng g-1) and hind (42.3 ± 8.2 ng g-1) intestine had significantly higher total Pd concentrations compared to the liver and carcass (1.3 ± 0.4 and 3.4 ± 1.1 ng g-1, respectively). At Day 7, there was no time-related difference in any organ (or the carcass) total Pd concentrations compared to Day 3. When the total Pd content was expressed as a body distribution based on mass of tissue, the carcass contained the highest fraction with 72.5 ± 5.2 % at Day 7, which could raise concerns over transfer to higher trophic levels. The total number of particles that entered the fish over the 7 days was 94.5 ± 13.5 × 106 particles, representing 0.07 ± 0.01 % of the Pd the fish had been fed. Following depuration, there was no detectable Pd in any organ or the carcass, indicating clearance from the fish. These data indicate that these NPs are taken into the internal organs and carcass of fish, yet removal of the exposure results in substantial excretion to below the limit of detection.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Microplásticos , Paladio , Poliestirenos , Exposición Dietética , Dieta
11.
Emerg Top Life Sci ; 6(4): 333-337, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453917

RESUMEN

Plastics are incredibly versatile materials that can bring diverse societal and environmental benefit, yet current practices of production, use and disposal have negative effects on wildlife, the environment and human health leading to growing concern across public, policy makers and industry. This Special Issue in Emerging Topics in Life Sciences describes recent advances in our understanding of the consequences of plastic pollution. In particular, it examines their potential to act as vectors for chemicals and pathogens in the environment; evaluates the effects of plastic pollution on biogeochemical cycling, ecosystem functioning and highlights the potential for enhanced effects in environments that are already subject to substantive changes in their climate. The impacts plastics pose to terrestrial ecosystems including soil communities are described and evaluated, along with evidence of potential issues for human health. With an increase in the production of plastics labelled as 'biodegradable' their context and ecological impacts are reviewed. Finally, we discuss the need to take an integrative, system approach when developing and evaluating solutions to plastic pollution, to achieve the ambitious yet necessary aims of the UN Plastics Treaty.


Asunto(s)
Planetas , Plásticos , Humanos , Ecosistema , Contaminación Ambiental , Industrias
12.
Emerg Top Life Sci ; 6(4): 435-439, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453918

RESUMEN

To date, much effort has been placed on quantifying plastic pollution and understanding its negative environmental effects, arguably to the detriment of research and evaluation of potential interventions. This has led to piecemeal progress in interventions to reduce plastic pollution, which do not correspond to the pace of emissions. For substances that are used on a global scale and identified as hazardous, there is a need to act before irreversible damage is done. For example, the history of dichlorodiphenyltrichloethane's (DDT) use has demonstrated that legacy chemicals with properties of persistence can still be found in the environment despite being first prohibited 50 years ago. Despite the growing evidence of harm, evidence to inform actions to abate plastic pollution lag behind. In part, this is because of the multifaceted nature of plastic pollution and understanding the connections between social, economic and environmental dimensions are complex. As such we highlight the utility of integrative systems approaches for addressing such complex issues, which unites a diversity of stakeholders (including policy, industry, academia and society), and provides a framework to identify to develop specific, measurable and time-bound international policies on plastic pollution and meet the ambitious yet necessary goals of the UN Plastic Treaty.


Asunto(s)
Contaminación Ambiental , Plásticos , Contaminación Ambiental/prevención & control , Industrias , Política Pública , Análisis de Sistemas
13.
Mar Pollut Bull ; 185(Pt B): 114371, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36423567

RESUMEN

Plastic pollution has been reported in the North Atlantic Ocean since the 1970s, yet limited data over subsequent decades pose challenges when assessing spatio-temporal trends in relation to global leakages and intervention strategies. This study quantified microplastics within the upper ocean along a longitudinal transect of the North Atlantic and its subtropical gyre. Microplastics were sampled from surface and subsurface (-25 m) water using a manta trawl and NIKSIN bottle respectively. The surface water polymer community varied significantly between geographic positions ('inshore', 'gyre', 'open ocean'), and was significantly influenced by fragment quantity. Compared to other positions, the North Atlantic gyre was associated with high concentrations of polyethylene, polypropylene, acrylic and polyamide fragments. Subsurface water was dominated by polyamide and polyester fibres. Backtracked 2-year Lagrangian simulations illustrated connectivity patterns. Continued monitoring of microplastics throughout the water column of the North Atlantic Ocean is required to address knowledge gaps and assess spatio-temporal trends.


Asunto(s)
Microplásticos , Plásticos , Nylons , Polietileno , Océano Atlántico , Agua
14.
Mar Pollut Bull ; 184: 114199, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209536

RESUMEN

Mechanical interventions are increasingly suggested as a means of removing plastic litter from aquatic environments; their performance is rarely evaluated, but such information is critical to inform policy interventions such as those required to facilitate UNEA 5.2. The Seabin, a fixed-point device designed to remove floating litter in sheltered waters was examined in an urban tidal marina (Southwest UK). It captured on average 58 litter items/day; chiefly plastic pellets, polystyrene balls and plastic fragments. It also captured one marine organism for every 3.6 items of litter, or 13 organisms/day, half of which were dead upon retrieval. The rate of litter capture was inferior to manual cleaning conducted with nets from pontoons or vessels. Hence, in this location the Seabin was of minimal benefit in terms of marine litter removal and resulted in mortality of marine organisms. The presence of such devices could also precipitate false optimism and reliance on technological solutions, rather than systemic changes in our production, use, and disposal of plastics.


Asunto(s)
Monitoreo del Ambiente , Poliestirenos , Monitoreo del Ambiente/métodos , Plásticos , Organismos Acuáticos , Residuos/análisis
16.
Sci Total Environ ; 831: 154886, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35364160

RESUMEN

Some of the highest microplastic concentrations in marine environments have been reported from the Fram Strait in the Arctic. This region supports a diverse ecosystem dependent on high concentrations of zooplankton at the base of the food web. Zooplankton samples were collected during research cruises using Bongo and MOCNESS nets in the boreal summers of 2018 and 2019. Using FTIR scanning spectroscopy in combination with an automated polymer identification approach, we show that all five species of Arctic zooplankton investigated had ingested microplastics. Amphipod species, found in surface waters or closely associated with sea ice, had ingested significantly more microplastic per individual (Themisto libellula: 1.8, Themisto abyssorrum: 1, Apherusa glacialis: 1) than copepod species (Calanus hyperboreus: 0.21, Calanus glacialis/finmarchicus: 0.01). The majority of microplastics ingested were below 50 µm in size, all were fragments and several different polymer types were present. We quantified microplastics in water samples collected at six of the same stations as the Calanus using an underway sampling system (inlet at 6.5 m water depth). Fragments of several polymer types and anthropogenic cellulosic fibres were present, with an average concentration of 7 microplastic particles (MP) L-1 (0-18.5 MP L-1). In comparison to the water samples, those microplastics found ingested by zooplankton were significantly smaller, highlighting that the smaller-sized microplastics were being selected for by the zooplankton. High levels of microplastic ingestion in zooplankton have been associated with negative effects on growth, development, and fecundity. As Arctic zooplankton only have a short window of biological productivity, any negative effect could have broad consequences. As global plastic consumption continues to increase and climate change continues to reduce sea ice cover, releasing ice-bound microplastics and leaving ice free areas open to exploitation, the Arctic could be exposed to further plastic pollution which could place additional strain on this fragile ecosystem.


Asunto(s)
Copépodos , Contaminantes Químicos del Agua , Animales , Regiones Árticas , Ingestión de Alimentos , Ecosistema , Monitoreo del Ambiente , Microplásticos , Plásticos , Agua , Contaminantes Químicos del Agua/análisis , Zooplancton
17.
Sci Total Environ ; 804: 150155, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520921

RESUMEN

While land-based sources of plastic pollution have gained increasing attention in recent years, ocean-based sources have been less well studied. The aim of this study was to compare a variety of ropes (differing in age, wear surface and material) to quantify and characterise the production of microplastic during use. This was achieved by simulating, in laboratory and field experiments, rope hauling activity which is typically performed on board maritime vessels, such as fishing boats. Microplastic generation was quantified by collecting fragments that were released as a consequence of abrasion. Notably, we show that microplastic fragments generated from rope wear during use were characteristically irregular in shape, rather than fibrous such as those assigned to synthetic rope by previous studies. Therefore, we suggest that some of the plastic fragments found in the marine environment may have been falsely attributed to land-based sources but have in fact arisen form the abrasion of rope. Our research found that new and one-year old polypropylene rope released significantly fewer microplastic fragments (14 ± 3 and 22 ± 5) and less microplastic mass (11 ± 2 and 12 ± 3 µg) per metre hauled compared to ropes of two (720 ± 51, 247 ± 18 µg) or ten (767 ± 55, 1052 ± 75 µg) years of age. We show that a substantial amount of microplastic contamination is likely to directly enter the marine environment due to in situ rope abrasion and that rope age is an important factor influencing microplastic release. Our research suggests the need for standards on rope maintenance, replacement, and recycling along with innovation in synthetic rope design with the aim to reduce microplastic emission.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Industrias , Plásticos , Polipropilenos , Contaminantes Químicos del Agua/análisis
18.
Environ Int ; 159: 106994, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922180

RESUMEN

Fish are widely reported to ingest microplastics with low levels accumulating in the tissues, but owing to analytical constraints, much less is known about the potential accumulation of nanoplastics via the gut. Recently, the labelling of plastics with inorganic metals (e.g., palladium) has allowed measurements of nanoplastic uptake. The aim of the current study was to quantitatively assess the uptake of nanoplastics by the fish gut using palladium-doped nanoplastics (with a mean hydrodynamic radius of 202 ±â€¯7 nm). By using an ex vivo gut sac exposure system, we show that in 4 h between 200 and 700 million nanoplastics (representing 2.5-9.4% of the administered nanoplastics dose) can enter the mucosa and muscularis layers of the intestine of salmon. Of the particles taken up, up to 700,000 (representing 0.6% of that taken into the tissue) of the nanoplastics passed across the gut epithelium of the anterior intestine and exit into the serosal saline. These data, generated in highly controlled conditions provide a proof-of-concept study, suggesting the potential for nanoplastics to distribute throughout the body, indicating the potential for systemic exposure in fish.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Intestinos/química , Microplásticos/toxicidad , Paladio , Plásticos , Poliestirenos/toxicidad , Salmón , Contaminantes Químicos del Agua/análisis
19.
Mar Pollut Bull ; 173(Pt B): 113115, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34743074

RESUMEN

While land-based sources of marine plastic pollution have gained widespread attention, marine-based sources are less extensively investigated. Here, we provide the first in-depth description of abandoned, lost or otherwise discarded fishing gear (ALDFG) on northern and southern beaches of the English Southwest Peninsula, Great Britain's region of highest ALDFG density. Three distinct categories were recorded: twisted rope (0.28 ± 0.14 m-1, 17%), braided rope (0.56 ± 0.28 m-1, 33%) and filament (0.84 ± 0.41 m-1, 50%), which likely correspond to fishing rope, net and line. Estimating the disintegration of ALDFG from length and filament number suggests that it has the potential to generate 1277 ± 431 microplastic pieces m-1, with fishing rope (44%) and net (49%) as the largest emitters. Importantly, ALDFG was over five times more abundant on the south coast, which is likely attributable to the three times higher fishing intensity in that area.


Asunto(s)
Microplásticos , Plásticos , Contaminación del Agua , Explotaciones Pesqueras , Caza , Reino Unido
20.
Mar Pollut Bull ; 172: 112897, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34482249

RESUMEN

Desk-based studies have suggested tyre wear particles contribute a substantial portion of microplastic emissions to the environment, yet few empirical studies report finding tyre wear. Samples were collected from three pathways to the marine environment: atmospheric deposition, treated wastewater effluent, and untreated surface runoff. Pyrolysis coupled to gas chromatography-mass spectrometry was used to detect benzothiazole, a molecular marker for tyres. Benzothiazole was detected in each pathway, emitting tyre wear in addition to other sources of microplastics. Release via surface water drainage was the principle pathway in the regions examined. Laboratory tests indicated larger particles likely settle close to their entry points, whereas smaller particles have potential for longer-range transport and dispersal. The previous lack of reports are likely a consequence of inadequate methods of detection, rather than a low environmental presence. Further work is required to establish distribution, transport potential, and potential impacts once within the marine environment.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Microplásticos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...