Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Manage ; 73(1): 130-143, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37891388

RESUMEN

How people value rivers, wetlands and floodplains influences their attitudes, beliefs and behaviours towards these ecosystems, and can shape policy and management interventions. Better understanding why people value rivers, wetlands and floodplains and their key ecosystem components, such as vegetation, helps to determine what factors underpin the social legitimacy required for effective management of these systems. This study sought to ascertain perspectives on the value of non-woody vegetation in river-floodplain systems via an online survey. The survey found that participants valued non-woody vegetation for their provision of a range of ecosystem functions and services, with strong emphasis on ecological aspects such as regulation functions, habitat provision and biodiversity. However, the inclusion of a question framed to focus on stories or narratives resulted in a different emphasis. Responses indicated that non-woody vegetation, and rivers, wetlands and floodplains were valued for the way they made people feel through lived experiences such as recreational activities, personal interactions with nature, educational and research experiences. This highlights the important role of storytelling in navigating complex natural resource management challenges and ascertaining a deeper understanding of values that moves beyond provision of function to feeling. Improved understanding of the diverse ways people value and interact with river-floodplain systems will help develop narratives and forms of engagement that foster shared understanding, empathy and collaboration. Appreciation of plural values such as the provision of functions and services along with the role of emotional connections and lived experience will likely increase lasting engagement of the general public with management to protect and restore river-floodplain systems.


Asunto(s)
Ecosistema , Humedales , Humanos , Ríos , Biodiversidad , Conservación de los Recursos Naturales/métodos
2.
J Environ Manage ; 348: 119499, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37924694

RESUMEN

Practitioners of environmental water management (EWM) operate within complex social-ecological systems. We sought to better understand this complexity by investigating the management of environmental water for vegetation outcomes. We conducted an online survey to determine practitioners' perspectives on EWM for non-woody vegetation (NWV) in the Murray-Darling Basin, Australia with regards to: i) desirable outcomes and benefits; ii) influencing factors and risks; iii) challenges of monitoring and evaluation, and iv) improving outcomes. Survey participants indicated that EWM aims to achieve outcomes by improving or maintaining vegetation attributes and the functions and values these provide. Our study reveals that EWM practitioners perceive NWV management in a holistic and highly interconnected way. Numerous influencing factors as well as risks and challenges to achieving outcomes were identified by participants, including many unrelated to water. Survey responses highlighted six areas to improve EWM for NWV outcomes: (1) flow regimes, (2) vegetation attributes, (3) non-flow drivers, (4) management-governance considerations, (5) functions and values, and (6) monitoring, evaluation and research. These suggest a need for more than 'just water' when it comes to the restoration and management of NWV. Our findings indicate more integrated land-water governance and management is urgently required to address the impacts of non-flow drivers such as pest species, land-use change and climate change. The results also indicate that inherent complexity in EWM for ecological outcomes has been poorly addressed, with a need to tackle social-ecological constraints to improve EWM outcomes.


Asunto(s)
Conservación de los Recursos Naturales , Agua , Humanos , Conservación de los Recursos Naturales/métodos , Australia , Abastecimiento de Agua , Ecosistema , Ríos
3.
Water Environ Res ; 95(8): e10909, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37429828

RESUMEN

High concentrations of the most consumed pharmaceuticals, caffeine and paracetamol, have been observed globally in wastewater treatment plant discharge. Here, we assess the potential for photodegradation of caffeine and paracetamol residues at concentrations like those observed in treated wastewater discharges to the environment. Laboratory assays were used to measure rates of photodegradation of these two compounds both in distilled water and in natural river water with leaf litter leachate. When exposed to artificial light simulating natural sunlight, the half-life values of caffeine and paracetamol were significantly shorter than in the dark. The presence of organic matter increased caffeine and paracetamol half-life by lessening the photolytic effect. These results suggest that photolysis is a substantial contributor to the degradation of caffeine and paracetamol. The findings contribute to our understanding of persistence of pharmaceuticals in treated wastewater discharge. PRACTITIONER POINTS: The photodegradation of caffeine and paracetamol residues in surface water was examined. With leaf litter leachate, caffeine and paracetamol were photodegraded in distilled and natural river water in laboratory. Caffeine's half-life ranged from 2.3 to 16.2 days under artificial sunlight andparacetamols from 4.3 to 12.2 days. When incubated in the dark, the half-life for both compounds exceeded 4 weeks. Organic matter decreased the photolytic action of caffeine and paracetamol.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Aguas Residuales , Fotólisis , Cafeína , Acetaminofén , Luz Solar , Contaminantes Químicos del Agua/química , Preparaciones Farmacéuticas
4.
Ecology ; 103(1): e03545, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614210

RESUMEN

Mechanisms linked to demographic, biogeographic, and food-web processes thought to underpin community stability could be affected by habitat size, but the effects of habitat size on community stability remain relatively unknown. We investigated whether those habitat-size-dependent properties influenced community instability and vulnerability to perturbations caused by disturbance. This is particularly important given that human exploitation is contracting ecosystems, and abiotic perturbations are becoming more severe and frequent. We used a perturbation experiment in which 10 streams, spanning three orders of magnitude in habitat size, were subjected to simulated bed movement akin to a major flood disturbance event. We measured the resistance, resilience, and variability of basal resources, and population and community-level responses across the stream habitat-size gradient immediately before, and at 0.5, 5, 10, 20, and 40 d post-disturbance. Resistance to disturbance consistently increased with stream size in all response variables. In contrast, resilience was significantly higher in smaller streams for some response variables. However, this higher resilience of small ecosystems was insufficient to compensate for their lower resistance, and communities of smaller streams were thus more variable over time than those of larger streams. Compensatory dynamics of populations, especially for predators, stabilized some aspects of communities, but these mechanisms were unrelated to habitat size. Together, our results provide compelling evidence for the links between habitat size and community stability, and should motivate ecologists and managers to consider how changes in the size of habitats will alter the vulnerability of ecosystems to perturbations caused by environmental disturbance.


Asunto(s)
Biota , Ecosistema , Ríos , Inundaciones
5.
Trends Ecol Evol ; 37(3): 211-222, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34969536

RESUMEN

Social-ecological networks (SENs) represent the complex relationships between ecological and social systems and are a useful tool for analyzing and managing ecosystem services. However, mainstreaming the application of SENs in ecosystem service research has been hindered by a lack of clarity about how to match research questions to ecosystem service conceptualizations in SEN (i.e., as nodes, links, attributes, or emergent properties). Building from different disciplines, we propose a typology to represent ecosystem service in SENs and identify opportunities and challenges of using SENs in ecosystem service research. Our typology provides guidance for this growing field to improve research design and increase the breadth of questions that can be addressed with SEN to understand human-nature interdependencies in a changing world.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos
6.
Sci Total Environ ; 763: 142997, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33250249

RESUMEN

Pesticides are increasingly recognised as a threat to freshwater biodiversity, but their specific ecological effects remain difficult to distinguish from those of co-occurring stressors and environmental gradients. Using mesocosms we examined the effects of an organophosphate insecticide (malathion) on stream macroinvertebrate communities concurrently exposed to a suite of stressors typical of streams in agricultural catchments. We assessed the specificity of the SPEcies At Risk index designed to determine pesticide effects in mesocosm trials (SPEARmesocosm). This index determines the log abundance proportion of taxa that are considered physiologically sensitive to pesticides. Geographic variation in pesticide sensitivity within taxa, coupled with variation between pesticides and the effects of co-occurring stressors may decrease the accuracy of SPEARmesocosm. To examine this, we used local pesticide sensitivity assessments based on rapid toxicity tests to develop two new SPEAR versions to compare to the original SPEARmesocosms index using mesocosm results. We further compared these results to multivariate analyses and community indices (e.g. richness, abundance, Simpson's diversity) commonly used to assess stressor effects on biota. To assess the implications of misclassifying species sensitivity on SPEAR indices we used a series of simulations using artificial data. The impacts of malathion were detectable using SPEARmesocosm, and one of two new SPEAR indices. All three of the SPEAR indices also increased when exposed to other agricultural non-pesticide stressors, and this change increased with greater pesticide concentrations. Our results support that interactions between other non-pesticide stressors with pesticides can affect SPEAR performance. Multivariate analysis and the other indices used here identified a significant effect of malathion especially at high concentrations, with little or no evidence of effects from the other agricultural stressors.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Invertebrados , Plaguicidas/análisis , Plaguicidas/toxicidad , Ríos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
Ecol Evol ; 9(19): 11464-11475, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31641486

RESUMEN

Studying food webs across contrasting abiotic conditions is an important tool in understanding how environmental variability impacts community structure and ecosystem dynamics. The study of extreme environments provides insight into community-wide level responses to environmental pressures with relevance to the future management of aquatic ecosystems. In the western Lake Eyre Basin of arid Australia, there are two characteristic and contrasting aquatic habitats: springs and rivers. Permanent isolated Great Artesian Basin springs represent hydrologically persistent environments in an arid desert landscape. In contrast, hydrologically variable river waterholes are ephemeral in space and time. We comprehensively sampled aquatic assemblages in contrasting ecosystem types to assess patterns in community composition and to quantify food web attributes with stable isotopes. Springs and rivers were found to have markedly different invertebrate communities, with rivers dominated by more dispersive species and springs associated with species that show high local endemism. Qualitative assessment of basal resources shows autochthonous carbon appears to be a key basal resource in both types of habitat, although the particular sources differed between habitats. Food-web variables such as trophic length, trophic breadth, and community isotopic niche size were relatively similar in the two habitat types. The basis for the similarity in food-web structure despite differences in community composition appears to be broader isotopic niches for predatory invertebrates and fish in springs as compared with rivers. In contrast to published theory, our findings suggest that the food webs of the hydrologically variable river sites may show less dietary generalization and more compact food-web modules than in springs.

8.
Nat Ecol Evol ; 3(6): 919-927, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110252

RESUMEN

Predator-prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator-prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Tamaño Corporal , Conducta Predatoria , Vertebrados
9.
Biol Rev Camb Philos Soc ; 93(2): 971-995, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29115026

RESUMEN

Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline.


Asunto(s)
Biodiversidad , Agua Dulce , Humedales , Animales , Conservación de los Recursos Hídricos , Hidrología , Modelos Biológicos
10.
Oecologia ; 185(1): 55-67, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28779225

RESUMEN

Intraspecific trait variation, including animal personalities and behavioural syndromes, affects how individual animals and populations interact with their environment. Within-species behavioural variation is widespread across animal taxa, which has substantial and unexplored implications for the ecological and evolutionary processes of animals. Accordingly, we sought to investigate individual behavioural characteristics in several populations of a desert-dwelling fish, the Australian desert goby (Chlamydogobius eremius). We reared first generation offspring in a common garden to compare non-ontogenic divergence in behavioural phenotypes between genetically interconnected populations from contrasting habitats (isolated groundwater springs versus hydrologically variable river waterholes). Despite the genetic connectedness of populations, fish had divergent bold-exploratory traits associated with their source habitat. This demonstrates divergence in risk-taking traits as a rapid phenotypic response to ecological pressures in arid aquatic habitats: neophilia may be suppressed by increased predation pressure and elevated by high intraspecific competition. Correlations between personality traits also differed between spring and river fish. River populations showed correlations between dispersal and novel environment behaviours, revealing an adaptive behavioural syndrome (related to dispersal and exploration) that was not found in spring populations. This illustrates the adaptive significance of heritable behavioural variation within and between populations, and their importance to animals persisting across contrasting habitats.


Asunto(s)
Ecosistema , Peces/fisiología , Personalidad , Conducta Predatoria , Ríos , Animales , Australia , Conducta Animal/fisiología , Clima Desértico
11.
J Environ Manage ; 203(Pt 1): 136-150, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28783010

RESUMEN

Environmental flows are used to restore elements of the hydrological regime altered by human use of water. One of the primary justifications and purposes for environmental flows is the maintenance of target species populations but, paradoxically, there has been little emphasis on incorporating the food-web and trophic dynamics that determine population-level responses into the monitoring and evaluation of environmental flow programs. We develop a generic framework for incorporating trophic dynamics into monitoring programs to identify the food-web linkages between hydrological regimes and population-level objectives of environmental flows. These linkages form the basis for objective setting, ecological targets and indicator selection that are necessary for planning monitoring programs with a rigorous scientific basis. Because there are multiple facets of trophic dynamics that influence energy production and transfer through food webs, the specific objectives of environmental flows need to be defined during the development of monitoring programs. A multitude of analytical methods exist that each quantify distinct aspects of food webs (e.g. energy production, prey selection, energy assimilation), but no single method can provide a basis for holistic understanding of food webs. Our paper critiques a range of analytical methods for quantifying attributes of food webs to inform the setting, monitoring and evaluation of trophic outcomes of environmental flows and advance the conceptual understanding of trophic dynamics in river-floodplain systems.


Asunto(s)
Cadena Alimentaria , Ríos , Animales , Ecología , Hidrología
12.
Water Res ; 124: 108-128, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28750285

RESUMEN

Environmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration. In this paper, we consider mechanisms by which flow variability can influence and alter food webs, and place these within a conceptual and numerical modelling framework. We also review the strengths and weaknesses of various approaches to modelling the effects of hydrological management on food webs. Although classic bioenergetic models such as Ecopath with Ecosim capture many of the key features required, other approaches, such as biogeochemical ecosystem modelling, end-to-end modelling, population dynamic models, individual-based models, graph theory models, and stock assessment models are also relevant. In many cases, a combination of approaches will be useful. We identify current challenges and new directions in modelling food-web responses to hydrological variability and environmental flow management. These include better integration of food-web and hydraulic models, taking physiologically-based approaches to food quality effects, and better representation of variations in space and time that may create ecosystem control points.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Humanos , Hidrología , Ríos
13.
Trends Ecol Evol ; 32(2): 118-130, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27856059

RESUMEN

Managing ecosystems to provide ecosystem services in the face of global change is a pressing challenge for policy and science. Predicting how alternative management actions and changing future conditions will alter services is complicated by interactions among components in ecological and socioeconomic systems. Failure to understand those interactions can lead to detrimental outcomes from management decisions. Network theory that integrates ecological and socioeconomic systems may provide a path to meeting this challenge. While network theory offers promising approaches to examine ecosystem services, few studies have identified how to operationalize networks for managing and assessing diverse ecosystem services. We propose a framework for how to use networks to assess how drivers and management actions will directly and indirectly alter ecosystem services.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ecología , Humanos
14.
Artículo en Inglés | MEDLINE | ID: mdl-27114576

RESUMEN

Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Ríos , Ecosistema , Modelos Biológicos
15.
Environ Pollut ; 208(Pt A): 221-232, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26371988

RESUMEN

The impact of stormwater on stream biota is well documented, but less is known about the impacts on ecosystem processes, such as the breakdown of organic matter. This study sought to establish whether the degree of urbanisation affected rates of leaf-litter breakdown within constructed wetlands. A litter bag method was used to ascertain rate of decomposition along a gradient of urbanisation (total imperviousness, TI), in constructed wetlands in western and south-eastern Melbourne. A significant positive relationship between TI and breakdown rate was found in the south-eastern wetlands. The significant reduction in rate of invertebrate-mediated breakdown with increasing concentration of certain metals was consistent with other studies. However, overall there was an increase in rate of breakdown. Studies have shown that the effects of heavy metals can be negated if nutrient levels are high. Our results suggest that other parameters besides exposure to contaminants are likely to affect leaf litter breakdown.


Asunto(s)
Metales Pesados/toxicidad , Hojas de la Planta/química , Urbanización , Contaminantes Químicos del Agua/toxicidad , Humedales , Animales , Australia , Ecosistema , Restauración y Remediación Ambiental , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Invertebrados/efectos de los fármacos , Metales Pesados/análisis , Microbiota/efectos de los fármacos , Microbiología del Agua , Contaminantes Químicos del Agua/análisis
16.
Sci Total Environ ; 536: 527-537, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26245534

RESUMEN

The construction of wetlands in urban environments is primarily carried out to assist in the removal of contaminants from wastewaters; however, these wetlands have the added benefit of providing habitat for aquatic invertebrates, fish and waterbirds. Stormwater quantity and quality is directly related to impervious area (roads, sealed areas, roofs) in the catchment. As a consequence, it would be expected that impervious area would be related to contaminant load and biodiversity in receiving waters such as urban wetlands. This study aimed to establish whether the degree of urbanisation and its associated changes to stormwater runoff affected macroinvertebrate richness and abundance within constructed wetlands. Urban wetlands in Melbourne's west and south east were sampled along a gradient of urbanisation. There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates detected for sites in the west, but not in the south east. However macroinvertebrate communities were relatively homogenous both within and between all study wetlands. Chironomidae (non-biting midges) was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. Their prevalence suggests that water quality is impaired in these systems, regardless of degree of urbanisation, although the causal mechanism is unclear. These results show some dependency between receiving wetland condition and the degree of urbanisation of the catchment, but suggest that other factors may be as important in determining the value of urban wetlands as habitat for wildlife.


Asunto(s)
Biodiversidad , Invertebrados/fisiología , Urbanización , Humedales , Animales , Monitoreo del Ambiente , Restauración y Remediación Ambiental
17.
Ecol Evol ; 5(6): 1235-48, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25859329

RESUMEN

The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.

18.
Glob Chang Biol ; 21(4): 1552-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25230693

RESUMEN

Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results demonstrate that reforestation using native mixed-species plantings is an effective alternative for carbon sequestration to standard monocultures of production species in medium rainfall areas of temperate continental climates, where they can effectively store C, convert C into stable pools and provide greater benefits for biodiversity.


Asunto(s)
Biomasa , Secuestro de Carbono , Carbono/análisis , Conservación de los Recursos Naturales , Suelo/química , Biodiversidad , Cambio Climático , Eucalyptus/crecimiento & desarrollo , Agricultura Forestal , Estaciones del Año , Árboles , Victoria
19.
PLoS One ; 9(8): e104887, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25137255

RESUMEN

Globally it is estimated that up to 37% of all marine mammals are at a risk of extinction, due in particular to human impacts, including coastal pollution. Dolphins are known to be at risk from anthropogenic contaminants due to their longevity and high trophic position. While it is known that beach-cast animals are often high in contaminants, it has not been possible to determine whether levels may also be high in live animals from the same populations. In this paper we quantitatively assess mercury contamination in the two main populations of a newly described dolphin species from south eastern Australia, Tursiops australis. This species appear to be limited to coastal waters in close proximity to a major urban centre, and as such is likely to be vulnerable to anthropogenic pollution. For the first time, we were able to compare blubber mercury concentrations from biopsy samples of live individuals and necropsies of beach-cast animals and show that beach-cast animals were highly contaminated with mercury, at almost three times the levels found in live animals. Levels in live animals were also high, and are attributable to chronic low dose exposure to mercury from the dolphin's diet. Measurable levels of mercury were found in a number of important prey fish species. This illustrates the potential for low dose toxins in the environment to pass through marine food webs and potentially contribute to marine mammal deaths. This study demonstrates the potential use of blubber from biopsy samples to make inferences about the health of dolphins exposed to mercury.


Asunto(s)
Delfines/metabolismo , Peces/metabolismo , Mercurio/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Tejido Adiposo/química , Animales , Autopsia , Biopsia , Femenino , Cadena Alimentaria , Humanos , Hígado/química , Masculino , Mercurio/metabolismo , Australia del Sur , Contaminantes Químicos del Agua/metabolismo
20.
Ecol Lett ; 17(1): 125-e2, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24165435

RESUMEN

Understanding effects of climate change on ecosystems will require a diverse range of approaches. We proposed using downscaled climate models to generate realistic weather scenarios as experimental treatments. Kreyling et al. propose a gradient approach to determine the shape of response functions. These approaches are different, but highly complementary.


Asunto(s)
Cambio Climático , Ecosistema , Modelos Teóricos , Proyectos de Investigación/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...