Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(36): e202207259, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35735124

RESUMEN

We report reversible high capacity adsorption of SO2 in robust Zr-based metal-organic framework (MOF) materials. Zr-bptc (H4 bptc=biphenyl-3,3',5,5'-tetracarboxylic acid) shows a high SO2 uptake of 6.2 mmol g-1 at 0.1 bar and 298 K, reflecting excellent capture capability and removal of SO2 at low concentration (2500 ppm). Dynamic breakthrough experiments confirm that the introduction of amine, atomically-dispersed CuII or heteroatomic sulphur sites into the pores enhance the capture of SO2 at low concentrations. The captured SO2 can be converted quantitatively to a pharmaceutical intermediate, aryl N-aminosulfonamide, thus converting waste to chemical values. In situ X-ray diffraction, infrared micro-spectroscopy and inelastic neutron scattering enable the visualisation of the binding domains of adsorbed SO2 molecules and host-guest binding dynamics in these materials at the atomic level. Refinement of the pore environment plays a critical role in designing efficient sorbent materials.

2.
Chemistry ; 28(50): e202201659, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-35726763

RESUMEN

The development of cost-effective sorbents for direct capture of trace CO2 (<1 %) from the atmosphere is an important and challenging task. Natural or commercial zeolites are promising sorbents, but their performance in adsorption of trace CO2 has been poorly explored to date. A systematic study on capture of trace CO2 by commercial faujasite zeolites reveals that the extra-framework cations play a key role on their performance. Under dry conditions, Ba-X displays high dynamic uptake of 1.79 and 0.69 mmol g-1 at CO2 concentrations of 10000 and 1000 ppm, respectively, and shows excellent recyclability in the temperature-swing adsorption processes. K-X exhibits perfect moisture resistance, and >95 % dry CO2 uptake can be preserved under relative humidity of 74 %. In situ solid-state NMR spectroscopy, synchrotron X-ray diffraction and neutron diffraction reveal two binding sites for CO2 in these zeolites, namely the basic framework oxygen atoms and the divalent alkaline earth metal ions. This study unlocks the potential of low-cost natural zeolites for applications in direct air capture.

3.
J Appl Crystallogr ; 54(Pt 5): 1455-1479, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667451

RESUMEN

The precipitation of hydrated phases from a chondrite-like Na-Mg-Ca-SO4-Cl solution is studied using in situ synchrotron X-ray powder diffraction, under rapid- (360 K h-1, T = 250-80 K, t = 3 h) and ultra-slow-freezing (0.3 K day-1, T = 273-245 K, t = 242 days) conditions. The precipitation sequence under slow cooling initially follows the predictions of equilibrium thermodynamics models. However, after ∼50 days at 245 K, the formation of the highly hydrated sulfate phase Na2Mg(SO4)2·16H2O, a relatively recent discovery in the Na2Mg(SO4)2-H2O system, was observed. Rapid freezing, on the other hand, produced an assemblage of multiple phases which formed within a very short timescale (≤4 min, ΔT = 2 K) and, although remaining present throughout, varied in their relative proportions with decreasing temperature. Mirabilite and meridianiite were the major phases, with pentahydrite, epsomite, hydrohalite, gypsum, blödite, konyaite and loweite also observed. Na2Mg(SO4)2·16H2O was again found to be present and increased in proportion relative to other phases as the temperature decreased. The results are discussed in relation to possible implications for life on Europa and application to other icy ocean worlds.

4.
J Am Chem Soc ; 143(17): 6586-6592, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33885294

RESUMEN

We report the reversible adsorption of ammonia (NH3) up to 9.9 mmol g-1 in a robust Al-based metal-organic framework, MFM-303(Al), which is functionalized with free carboxylic acid and hydroxyl groups. The unique pore environment decorated with these acidic sites results in an exceptional packing density of NH3 at 293 K (0.801 g cm-3) comparable to that of solid NH3 at 193 K (0.817 g cm-3). In situ synchrotron X-ray diffraction and inelastic neutron scattering reveal the critical role of free -COOH and -OH groups in immobilizing NH3 molecules. Breakthrough experiments confirm the excellent performance of MFM-303(Al) for the capture of NH3 at low concentrations under both dry and wet conditions.

5.
Faraday Discuss ; 225: 133-151, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179673

RESUMEN

The metal-organic framework (Me2NH2)2[Cd(NO2BDC)2] (SHF-81) comprises flattened tetrahedral Cd(O2CR)42- nodes, in which Cd(ii) centres are linked via NO2BDC2- ligands (2-nitrobenzene-1,4-dicarboxylate) to give a doubly interpenetrated anionic network, with charge balanced by two Me2NH2+ cations per Cd centre resident in the pores. The study establishes that this is a twinned α-quartz-type structure (trigonal, space group P3x21, x = 1 or 2), although very close to the higher symmetry ß-quartz arrangement (hexagonal, P6x22, x = 2 or 4) in its as-synthesised solvated form [Cd(NO2BDC)2]·2DMF·0.5H2O (SHF-81-DMF). The activated MOF exhibits very little N2 uptake at 77 K, but shows significant CO2 uptake at 273-298 K with an isosteric enthalpy of adsorption (ΔHads) at zero coverage of -27.4 kJ mol-1 determined for the MOF directly activated from SHF-81-DMF. A series of in situ diffraction experiments, both single-crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD), reveal that the MOF is flexible and exhibits breathing behaviour with observed changes as large as 12% in the a- and b-axes (|Δa|, |Δb| < 1.8 Å) and 5.5% in the c-axis (|Δc| < 0.7 Å). Both the solvated SHF-81-DMF and activated/desolvated SHF-81 forms of the MOF exhibit linear negative thermal expansion (NTE), in which pores that run parallel to the c-axis expand in diameter (a- and b-axis) while contracting in length (c-axis) upon increasing temperature. Adsorption of CO2 gas at 298 K also results in linear negative expansion (Δa, Δb > 0; Δc < 0; ΔV > 0). The largest change in dimensions is observed during activation/desolvation from SHF-81-DMF to SHF-81 (Δa, Δb < 0; Δc > 0; ΔV < 0). Collectively the nine in situ diffraction experiments conducted suggest the breathing behaviour is continuous, although individual desolvation and adsorption experiments do not rule out the possibility of a gating or step at intermediate geometries that is coupled with continuous dynamic behaviour towards the extremities of the breathing amplitude.

6.
ACS Appl Mater Interfaces ; 12(38): 42949-42954, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32803955

RESUMEN

Temperature- or pressure-swing sorption in porous metal-organic framework (MOF) materials has been proposed for new gas separation technologies. The high tunability of MOFs toward particular adsorbates and the relatively low energy penalty for system regeneration indicate that reversible physisorption in MOFs has the potential to create economic and environmental benefits compared with state-of-the-art chemisorption systems. However, for MOF-based sorbents to be commercialized, they have to show long-term stability under the conditions imposed by the application. Here, we demonstrate the structural stability of MFM-300(Al) in the presence of a series of industrially relevant toxic and corrosive gases, including SO2, NO2, and NH3, over 4 years using long-duration synchrotron X-ray powder diffraction. Full structural analysis of gas-loaded MFM-300(Al) confirms the retention of these toxic gas molecules within the porous framework for up to 200 weeks, and cycling adsorption experiments verified the reusability of MFM-300(Al) for the capture of these toxic air pollutants.

7.
J Appl Crystallogr ; 51(Pt 4): 1197-1210, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30147638

RESUMEN

Liquid oceans and ice caps, along with ice crusts, have long been considered defining features of the Earth, but space missions and observations have shown that they are in fact common features among many of the solar system's outer planets and their satellites. Interactions with rock-forming materials have produced saline oceans not dissimilar in many respects to those on Earth, where mineral precipitation within frozen seawater plays a significant role in both determining global properties and regulating the environment in which a complex ecosystem of extremophiles exists. Since water is considered an essential ingredient for life, the presence of oceans and ice on other solar system bodies is of great astrobiological interest. However, the details surrounding mineral precipitation in freezing environments are still poorly constrained, owing to the difficulties of sampling and ex situ preservation for laboratory analysis, meaning that predictive models have limited empirical underpinnings. To address this, the design and performance characterization of a transmission-geometry sample cell for use in long-duration synchrotron X-ray powder diffraction studies of in situ mineral precipitation from aqueous ice-brine systems are presented. The cell is capable of very slow cooling rates (e.g. 0.3°C per day or less), and its performance is demonstrated with the results from a year-long study of the precipitation of the hydrated magnesium sulfate phase meridianiite (MgSO4·11H2O) from the MgSO4-H2O system. Evidence from the Mars Rover mission suggests that this hydrated phase is widespread on the present-day surface of Mars. However, as well as the predicted hexagonal ice and meridianiite phases, an additional hydrated sulfate phase and a disordered phase are observed.

8.
Nat Chem ; 9(9): 882-889, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28837170

RESUMEN

Understanding the behaviour of flexible metal-organic frameworks (MOFs)-porous crystalline materials that undergo a structural change upon exposure to an external stimulus-underpins their design as responsive materials for specific applications, such as gas separation, molecular sensing, catalysis and drug delivery. Reversible transformations of a MOF between open- and closed-pore forms-a behaviour known as 'breathing'-typically occur through well-defined crystallographic transitions. By contrast, continuous breathing is rare, and detailed characterization has remained very limited. Here we report a continuous-breathing mechanism that was studied by single-crystal diffraction in a MOF with a diamondoid network, (Me2NH2)[In(ABDC)2] (ABDC, 2-aminobenzene-1,4-dicarboxylate). Desolvation of the MOF in two different solvents leads to two polymorphic activated forms with very different pore openings, markedly different gas-adsorption capacities and different CO2 versus CH4 selectivities. Partial desolvation introduces a gating pressure associated with CO2 adsorption, which shows that the framework can also undergo a combination of stepped and continuous breathing.

9.
J Appl Crystallogr ; 50(Pt 1): 172-183, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28190992

RESUMEN

A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

10.
Chemistry ; 22(37): 13120-6, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27483388

RESUMEN

The coordination polymers [Ag4 (O2 CCF3 )4 (phen)3 ]⋅ phen⋅arene (1⋅phen⋅arene) (phen=phenazine; arene=toluene, p-xylene or benzene) have been synthesised from the solution phase in a series of arene solvents and crystallographically characterised. By contrast, analogous syntheses from o-xylene and m-xylene as the solvent yield the solvent-free coordination polymer [Ag4 (O2 CCF3 )4 (phen)2 ] (2). Toluene, p-xylene and benzene have been successfully used in mixed-arene syntheses to template the formation of coordination polymers 1⋅phen⋅arene, which incorporate o- or m-xylene. The selectivity of 1⋅phen⋅arene for the arene guests was determined, through pairwise competition experiments, to be p-xylene>toluene≈benzene>o-xylene>m-xylene. The largest selectivity coefficient was determined as 14.2 for p-xylene:m-xylene and the smallest was 1.0 for toluene:benzene.

11.
Chemistry ; 21(24): 8799-811, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25962844

RESUMEN

Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)2 ] formed by loss of TMP ligands exclusively from singly-bridging sites. Four polymorphic forms of 1 (1-A(LT) , 1-A(HT) , 1-B(LT) and 1-B(HT) ; HT=high temperature, LT=low temperature) have been identified crystallographically. In situ powder X-ray diffraction (PXRD) studies of the 1-ROH→1→2 transformations indicate the role of the HT polymorphs in these reactions. The structural relationship between polymorphs, involving changes in conformation of perfluoroalkyl chains and a change in orientation of entire polymers (A versus B forms), suggests a mechanism for the observed reactions and a pathway for guest transport within the fluorous layers. Consistent with this pathway, optical microscopy and AFM studies on single crystals of 1-MeOH/1-A(HT) show that cracks parallel to the layers of interdigitated perfluoroalkyl chains develop during the MeOH release/uptake process.

12.
IUCrJ ; 2(Pt 2): 188-97, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25866656

RESUMEN

A family of one-dimensional coordination polymers, [Ag4(O2C(CF2)2CF3)4(phenazine)2(arene) n ]·m(arene), 1 (arene = toluene or xylene), have been synthesized and crystallographically characterized. Arene guest loss invokes structural transformations to yield a pair of polymorphic coordination polymers [Ag4(O2C(CF2)2CF3)4(phenazine)2], 2a and/or 2b , with one- and two-dimensional architectures, respectively. The role of pre-organization of the polymer chains of 1 in the selectivity for formation of either polymorph is explored, and the templating effect of toluene and p-xylene over o-xylene or m-xylene in the formation of arene-containing architecture 1 is also demonstrated. The formation of arene-free phase 2b , not accessible in a phase-pure form through other means, is shown to be the sole product of loss of toluene from 1-tol·tol [Ag4(O2C(CF2)2CF3)4(phenazine)2(toluene)]·2(toluene), a phase containing toluene coordinated to Ag(I) in an unusual µ:η(1),η(1) manner. Solvent-vapour-assisted conversion between the polymorphic coordination polymers and solvent-vapour influence on the conversion of coordination polymers 1 to 2a and 2b is also explored. The transformations have been examined and confirmed by X-ray diffraction, NMR spectroscopy and thermal analyses, including in situ diffraction studies of some transformations.

13.
Angew Chem Int Ed Engl ; 54(22): 6447-51, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25873105

RESUMEN

Desolvated zeolitic imidazolate framework ZIF-4(Zn) undergoes a discontinuous porous to dense phase transition on cooling through 140 K, with a 23 % contraction in unit cell volume. The structure of the non-porous, low temperature phase was determined from synchrotron X-ray powder diffraction data and its density was found to be slightly less than that of the densest ZIF phase, ZIF-zni. The mechanism of the phase transition involves a cooperative rotation of imidazolate linkers resulting in isotropic framework contraction and pore space minimization. DFT calculations established the energy of the new structure relative to those of the room temperature phase and ZIF-zni, while DSC measurements indicate the entropic stabilization of the porous room temperature phase at temperatures above 140 K.

14.
J Am Chem Soc ; 135(42): 15763-73, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23731240

RESUMEN

Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.

16.
J Am Chem Soc ; 134(42): 17628-42, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23013547

RESUMEN

A series of univalent cation forms of zeolite Rho (M(9.8)Al(9.8)Si(38.2)O(96), M = H, Li, Na, K, NH(4), Cs) and ultrastabilized zeolite Rho (US-Rho) have been prepared. Their CO(2) adsorption behavior has been measured at 298 K and up to 1 bar and related to the structures of the dehydrated forms determined by Rietveld refinement and, for H-Rho and US-Rho, by solid state NMR. Additionally, CO(2) adsorption properties of the H-form of the silicoalumino-phosphate with the RHO topology and univalent cation forms of the zeolite ZK-5 were measured for comparison. The highest uptakes at 0.1 bar, 298 K for both Rho and ZK-5 were obtained on the Li-forms (Li-Rho, 3.4 mmol g(-1); Li-ZK-5, 4.7 mmol g(-1)). H- and US-Rho had relatively low uptakes under these conditions: extra-framework Al species do not interact strongly with CO(2). Forms of zeolite Rho in which cations occupy window sites between α-cages show hysteresis in their CO(2) isotherms, the magnitude of which (Na(+),NH(4)(+) < K(+) < Cs(+)) correlates with the tendency for cations to occupy double eight-membered ring sites rather than single eight-membered ring sites. Hysteresis is not observed for zeolites where cations do not occupy the intercage windows. In situ synchrotron X-ray diffraction of the CO(2) adsorption on Na-Rho at 298 K identifies the adsorption sites. The framework structure of Na-Rho "breathes" as CO(2) is adsorbed and desorbed and its desorption kinetics from Na-Rho at 308 K have been quantified by the Zero Length Column chromatographic technique. Na-Rho shows much higher CO(2)/C(2)H(6) selectivity than Na-ZK-5, as determined by single component adsorption, indicating that whereas CO(2) can diffuse readily through windows containing Na(+) cations, ethane cannot.

17.
Inorg Chem ; 51(12): 6876-89, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22668027

RESUMEN

The crystal structure of NaNbO(3) has been studied in detail in the temperature regime 360 < T < 520 °C using a combination of high-resolution neutron and synchrotron X-ray powder diffraction, supported by first-principles calculations. A systematic symmetry-mode analysis is used to determine the presence of the key active distortion modes that, in turn, provides a small and an unambiguous set of trial structural models. A unique model for Phase S (480 < T < 510 °C) is elucidated, having a 2 × 2 × 4 superlattice of the aristotype perovskite structure, space group Pmmn. This unusual and unique structure features a novel example of a compound octahedral tilt system in a perovskite. Two possible structural models for Phase R (370 < T < 470 °C) are determined, each having a 2 × 2 × 6 superlattice and differing only in the nature of the complex tilt system along the 'long' axis. It is impossible to identify a definitive model from the present study, although reasons for preferring one over the other are discussed. Some of the possible pitfalls in determining such complex, pseudosymmetric crystal structures from powder diffraction data are also highlighted.

18.
Dalton Trans ; 41(14): 3937-41, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22086355

RESUMEN

The scandium analogue of the flexible terephthalate MIL-53 yields a novel closed pore structure upon removal of guest molecules which has unusual thermal behaviour and stepwise opening during CO(2) adsorption. By contrast, the nitro-functionalised MIL-53(Sc) cannot fully close and the structure possesses permanent porosity for CO(2).

19.
Inorg Chem ; 50(21): 10844-58, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21958382

RESUMEN

The crystal structure of the small pore scandium terephthalate Sc(2)(O(2)CC(6)H(4)CO(2))(3) (hereafter Sc(2)BDC(3), BDC = 1,4-benzenedicarboxylate) has been investigated as a function of temperature and of functionalization, and its performance as an adsorbent for CO(2) has been examined. The structure of Sc(2)BDC(3) has been followed in vacuo over the temperature range 140 to 523 K by high resolution synchrotron X-ray powder diffraction, revealing a phase change at 225 K from monoclinic C2/c (low temperature) to Fddd (high temperature). The orthorhombic form shows negative thermal expansivity of 2.4 × 10(-5) K(-1): Rietveld analysis shows that this results largely from a decrease in the c axis, which is caused by carboxylate group rotation. (2)H wide-line and MAS NMR of deuterated Sc(2)BDC(3) indicates reorientation of phenyl groups via π flips at temperatures above 298 K. The same framework solid has also been prepared using monofunctionalized terephthalate linkers containing -NH(2) and -NO(2) groups. The structure of Sc(2)(NH(2)-BDC)(3) has been determined by Rietveld analysis of synchrotron powder diffraction at 100 and 298 K and found to be orthorhombic at both temperatures, whereas the structure of Sc(2)(NO(2)-BDC)(3) has been determined by single crystal diffraction at 298 K and Rietveld analysis of synchrotron powder diffraction at 100, 298, 373, and 473 K and is found to be monoclinic at all temperatures. Partial ordering of functional groups is observed in each structure. CO(2) adsorption at 196 and 273 K indicates that whereas Sc(2)BDC(3) has the largest capacity, Sc(2)(NH(2)-BDC)(3) shows the highest uptake at low partial pressure because of strong -NH(2)···CO(2) interactions. Remarkably, Sc(2)(NO(2)-BDC)(3) adsorbs 2.6 mmol CO(2) g(-1) at 196 K (P/P(0) = 0.5), suggesting that the -NO(2) groups are able to rotate to allow CO(2) molecules to diffuse along the narrow channels.

20.
J Synchrotron Radiat ; 18(Pt 4): 637-48, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21685682

RESUMEN

The commissioning and performance characterization of a position-sensitive detector designed for fast X-ray powder diffraction experiments on beamline I11 at Diamond Light Source are described. The detecting elements comprise 18 detector-readout modules of MYTHEN-II silicon strip technology tiled to provide 90° coverage in 2θ. The modules are located in a rigid housing custom designed at Diamond with control of the device fully integrated into the beamline data acquisition environment. The detector is mounted on the I11 three-circle powder diffractometer to provide an intrinsic resolution of Δ2θ approximately equal to 0.004°. The results of commissioning and performance measurements using reference samples (Si and AgI) are presented, along with new results from scientific experiments selected to demonstrate the suitability of this facility for powder diffraction experiments where conventional angle scanning is too slow to capture rapid structural changes. The real-time dehydrogenation of MgH(2), a potential hydrogen storage compound, is investigated along with ultrafast high-throughput measurements to determine the crystallite quality of different samples of the metastable carbonate phase vaterite (CaCO(3)) precipitated and stabilized in the presence of amino acid molecules in a biomimetic synthesis process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...