Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nature ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750368

RESUMEN

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.

2.
Acta Physiol (Oxf) ; 240(3): e14099, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38230889

RESUMEN

AIM: Heart Failure with preserved Ejection Fraction (HFpEF) is characterized by diastolic dysfunction and reduced cardiac output, but its pathophysiology remains poorly understood. Animal models of HFpEF are challenging due to difficulties in assessing the degree of heart failure in small animals. This study aimed at inducing HFpEF in a mouse model to probe preload-dependency. METHODS: Increased body mass and arterial hypertension were induced in mice using a Western diet and NO synthase inhibition. Preload dependence was tested ex vivo. RESULTS: Mice with obesity and hypertension exhibited reduced cardiac output, indicating a failing heart. Increased left ventricular filling pressure during diastole suggested reduced compliance. Notably, the ejection fraction was preserved, suggesting the development of HFpEF. Spontaneous physical activity at night was reduced in HFpEF mice, indicating exercise intolerance; however, the cardiac connective tissue content was comparable between HFpEF and control mice. The HFpEF mice showed increased vulnerability to reduced preload ex vivo, indicating that elevated left ventricular filling pressure compensated for the rigid left ventricle, preventing a critical decrease in cardiac output. CONCLUSION: This animal model successfully developed mild HFpEF with a reduced pump function that was dependent on a high preload. A model of mild HFpEF may serve as a valuable tool for studying disease progression and interventions aimed at delaying or reversing symptom advancement, considering the slow development of HFpEF in patients.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Hipertensión , Humanos , Ratones , Animales , Volumen Sistólico , Modelos Animales de Enfermedad , Función Ventricular Izquierda
3.
JACC Basic Transl Sci ; 8(9): 1141-1156, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791313

RESUMEN

Circadian clocks temporally orchestrate biological processes critical for cellular/organ function. For example, the cardiomyocyte circadian clock modulates cardiac metabolism, signaling, and electrophysiology over the course of the day, such that, disruption of the clock leads to age-onset cardiomyopathy (through unknown mechanisms). Here, we report that genetic disruption of the cardiomyocyte clock results in chronic induction of the transcriptional repressor E4BP4. Importantly, E4BP4 deletion prevents age-onset cardiomyopathy following clock disruption. These studies also indicate that E4BP4 regulates both cardiac metabolism (eg, fatty acid oxidation) and electrophysiology (eg, QT interval). Collectively, these studies reveal that E4BP4 is a novel regulator of both cardiac physiology and pathophysiology.

4.
Physiol Rep ; 11(11): e15697, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37269161

RESUMEN

Physiological properties and function of the lymphatic system is still somewhat of a mystery. We report the current knowledge about human lymphatic vessel contractility and capability of adaptation. A literature search in PubMed identified studies published January 2000-September 2022. Inclusion criteria were studies investigating parameters related to contraction frequency, fluid velocity, and lymphatic pressure in vivo and ex vivo in human lymphatic vessels. The search returned 2885 papers of which 28 met the inclusion criteria. In vivo vessels revealed baseline contraction frequencies between 0.2 ± 0.2 and 1.8 ± 0.1 min1 , velocities between 0.008 ± 0.002 and 2.3 ± 0.3 cm/s, and pressures between 4.5 (range 0.5-9.2) and 60.3 ± 2.8 mm Hg. Gravitational forces, hyperthermia, and treatment with nifedipine caused increases in contraction frequency. Ex vivo lymphatic vessels displayed contraction frequencies between 1.2 ± 0.1 and 5.5 ± 1.2 min-1 . Exposure to agents affecting cation and anion channels, adrenoceptors, HCN channels, and changes in diameter-tension properties all resulted in changes in functional parameters as known from the blood vascular system. We find that the lymphatic system is dynamic and adaptable. Different investigative methods yields alternating results. Systematic approaches, consensus on investigative methods, and larger studies are needed to fully understand lymphatic transport and apply this in a clinical context.


Asunto(s)
Sistema Linfático , Vasos Linfáticos , Humanos , Vasos Linfáticos/fisiología , Adaptación Fisiológica , Aclimatación
5.
Cells ; 12(8)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37190017

RESUMEN

Two α-isoforms of the Na+,K+-ATPase (α1 and α2) are expressed in the cardiovascular system, and it is unclear which isoform is the preferential regulator of contractility. Mice heterozygous for the familial hemiplegic migraine type 2 (FHM2) associated mutation in the α2-isoform (G301R; α2+/G301R mice) have decreased expression of cardiac α2-isoform but elevated expression of the α1-isoform. We aimed to investigate the contribution of the α2-isoform function to the cardiac phenotype of α2+/G301R hearts. We hypothesized that α2+/G301R hearts exhibit greater contractility due to reduced expression of cardiac α2-isoform. Variables for contractility and relaxation of isolated hearts were assessed in the Langendorff system without and in the presence of ouabain (1 µM). Atrial pacing was performed to investigate rate-dependent changes. The α2+/G301R hearts displayed greater contractility than WT hearts during sinus rhythm, which was rate-dependent. The inotropic effect of ouabain was more augmented in α2+/G301R hearts than in WT hearts during sinus rhythm and atrial pacing. In conclusion, cardiac contractility was greater in α2+/G301R hearts than in WT hearts under resting conditions. The inotropic effect of ouabain was rate-independent and enhanced in α2+/G301R hearts, which was associated with increased systolic work.


Asunto(s)
Fibrilación Atrial , Trastornos Migrañosos , Ratones , Animales , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ouabaína/farmacología , Isoformas de Proteínas/metabolismo , Mutación/genética , Fenotipo
6.
Biomedicines ; 11(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36830881

RESUMEN

Heterozygous mice (α2+/G301R mice) for the migraine-associated mutation (G301R) in the Na+,K+-ATPase α2-isoform have decreased expression of cardiovascular α2-isoform. The α2+/G301R mice exhibit a pro-contractile vascular phenotype associated with decreased left ventricular ejection fraction. However, the integrated functional cardiovascular consequences of this phenotype remain to be addressed in vivo. We hypothesized that the vascular response to α2-isoform-specific inhibition of the Na+,K+-ATPase by ouabain is augmented in α2+/G301R mice leading to reduced cardiac efficiency. Thus, we aimed to assess the functional contribution of the α2-isoform to in vivo cardiovascular function of wild-type (WT) and α2+/G301R mice. Blood pressure, stroke volume, heart rate, total peripheral resistance, arterial dP/dt, and systolic time intervals were assessed in anesthetized WT and α2+/G301R mice. To address rate-dependent cardiac changes, cardiovascular variables were compared before and after intraperitoneal injection of ouabain (1.5 mg/kg) or vehicle during atrial pacing. The α2+/G301R mice showed an enhanced ouabain-induced increase in total peripheral resistance associated with reduced efficiency of systolic development compared to WT. When the hearts were paced, ouabain reduced stroke volume in α2+/G301R mice. In conclusion, the ouabain-induced vascular response was augmented in α2+/G301R mice with consequent suppression of cardiac function.

7.
Acta Physiol (Oxf) ; 237(3): e13925, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36606541

RESUMEN

BACKGROUND: The Purkinje fibers convey the electrical impulses at much higher speed than the working myocardial cells. Thus, the distribution of the Purkinje network is of paramount importance for the timing and coordination of ventricular activation. The Purkinje fibers are found in the subendocardium of all species of mammals, but some mammals also possess an intramural Purkinje fiber network that provides for relatively instantaneous, burst-like activation of the entire ventricular wall, and gives rise to an rS configuration in lead II of the ECG. AIM: To relate the topography of the horse heart and the distribution and histology of the conduction system to the pattern of ventricular activation as a mechanism for the unique electrical axis of the equine heart. METHODS: The morphology and distribution of the cardiac conduction system was determined by histochemistry. The electrical activity was measured using ECG in the Einthoven and orthogonal configuration. RESULTS: The long axis of the equine heart is close to vertical. Outside the nodal regions the conduction system consisted of Purkinje fibers connected by connexin 43 and long, slender parallel running transitional cells. The Purkinje fiber network extended deep into the ventricular walls. ECGs recorded in an orthogonal configuration revealed a mean electrical axis pointing in a cranial-to-left direction indicating ventricular activation in an apex-to-base direction. CONCLUSION: The direction of the mean electrical axis in the equine heart is determined by the architecture of the intramural Purkinje network, rather than being a reflection of ventricular mass.


Asunto(s)
Ventrículos Cardíacos , Ramos Subendocárdicos , Caballos , Animales , Ramos Subendocárdicos/fisiología , Electrocardiografía , Miocitos Cardíacos , Mamíferos
9.
Front Physiol ; 13: 831724, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250634

RESUMEN

OBJECTIVE: Investigating the cardiovascular system is challenging due to its complex regulation by humoral and neuronal factors. Despite this complexity, many existing research methods are limited to the assessment of a few parameters leading to an incomplete characterization of cardiovascular function. Thus, we aim to establish a murine in vivo model for integrated assessment of the cardiovascular system under conditions of controlled heart rate. Utilizing this model, we assessed blood pressure, cardiac output, stroke volume, total peripheral resistance, and electrocardiogram (ECG). HYPOTHESIS: We hypothesize that (i) our in vivo model can be utilized to investigate cardiac and vascular responses to pharmacological intervention with the α1-agonist phenylephrine, and (ii) we can study cardiovascular function during artificial pacing of the heart, modulating cardiac function without a direct vascular effect. METHODS: We included 12 mice that were randomly assigned to either vehicle or phenylephrine intervention through intraperitoneal administration. Mice were anesthetized with isoflurane and intubated endotracheally for mechanical ventilation. We measured blood pressure via a solid-state catheter in the aortic arch, blood flow via a probe on the ascending aorta, and ECG from needle electrodes on the extremities. Right atrium was electrically paced at a frequency ranging from 10 to 11.3 Hz before and after either vehicle or phenylephrine administration. RESULTS: Phenylephrine significantly increased blood pressure, stroke volume, and total peripheral resistance compared to the vehicle group. Moreover, heart rate was significantly decreased following phenylephrine administration. Pacing significantly decreased stroke volume and cardiac output both prior to and after drug administration. However, phenylephrine-induced changes in blood pressure and total peripheral resistance were maintained with increasing pacing frequencies compared to the vehicle group. Total peripheral resistance was not significantly altered with increasing pacing frequencies suggesting that the effect of phenylephrine is primarily of vascular origin. CONCLUSION: In conclusion, this in vivo murine model is capable of distinguishing between changes in peripheral vascular and cardiac functions. This study underlines the primary effect of phenylephrine on vascular function with secondary changes to cardiac function. Hence, this in vivo model is useful for the integrated assessment of the cardiovascular system.

10.
Sci Rep ; 12(1): 4760, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35306519

RESUMEN

Heart failure is a multifactorial disease that affects an estimated 38 million people worldwide. Current pharmacotherapy of heart failure with reduced ejection fraction (HFrEF) includes combination therapy with angiotensin-converting enzyme inhibitors (ACEi) and ß-adrenergic receptor blockers (ß-AR blockers), a therapy also used as treatment for non-cardiac conditions. Our knowledge of the molecular changes accompanying treatment with ACEi and ß-AR blockers is limited. Here, we applied proteomics and phosphoproteomics approaches to profile the global changes in protein abundance and phosphorylation state in cardiac left ventricles consequent to combination therapy of ß-AR blocker and ACE inhibitor in HFrEF and control hearts. The phosphorylation changes induced by treatment were profoundly different for failing than for non-failing hearts. HFrEF was characterized by profound downregulation of mitochondrial proteins coupled with derangement of ß-adrenergic and pyruvate dehydrogenase signaling. Upon treatment, phosphorylation changes consequent to HFrEF were reversed. In control hearts, treatment mainly led to downregulation of canonical PKA signaling. The observation of divergent signaling outcomes depending on disease state underscores the importance of evaluating drug effects within the context of the specific conditions present in the recipient heart.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Insuficiencia Cardíaca , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Corazón , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Humanos , Volumen Sistólico/fisiología
11.
Sci Rep ; 11(1): 12253, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112814

RESUMEN

Loss-of-function (LoF) mutations in KCNQ1, encoding the voltage-gated K+ channel Kv7.1, lead to long QT syndrome 1 (LQT1). LQT1 patients also present with post-prandial hyperinsulinemia and hypoglycaemia. In contrast, KCNQ1 polymorphisms are associated with diabetes, and LQTS patients have a higher prevalence of diabetes. We developed a mouse model with a LoF Kcnq1 mutation using CRISPR-Cas9 and hypothesized that this mouse model would display QT prolongation, increased glucose-stimulated insulin secretion and allow for interrogation of Kv7.1 function in islets. Mice were characterized by electrocardiography and oral glucose tolerance tests. Ex vivo, islet glucose-induced insulin release was measured, and beta-cell area quantified by immunohistochemistry. Homozygous mice had QT prolongation. Ex vivo, glucose-stimulated insulin release was increased in islets from homozygous mice at 12-14 weeks, while beta-cell area was reduced. Non-fasting blood glucose levels were decreased at this age. In follow-up studies 8-10 weeks later, beta-cell area was similar in all groups, while glucose-stimulated insulin secretion was now reduced in islets from hetero- and homozygous mice. Non-fasting blood glucose levels had normalized. These data suggest that Kv7.1 dysfunction is involved in a transition from hyper- to hyposecretion of insulin, potentially explaining the association with both hypoglycemia and hyperglycemia in LQT1 patients.


Asunto(s)
Secreción de Insulina , Insulina/biosíntesis , Islotes Pancreáticos/metabolismo , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Mutación con Pérdida de Función , Alelos , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Glucosa/metabolismo , Síndrome de QT Prolongado/etiología , Ratones
12.
Acta Physiol (Oxf) ; 233(1): e13707, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34176211

RESUMEN

AIM: Cardiac arrhythmias and sudden deaths have diurnal rhythms in humans. The underlying mechanisms are unknown. Mice with cardiomyocyte-specific disruption of the molecular clock genes have lower heart rate than control. Because changes in the QT interval on the electrocardiogram is a clinically used marker of risk of arrhythmias, we sought to test if the biological rhythms of QT intervals are dependent on heart rate and if this dependency is changed when the molecular clock is disrupted. METHODS: We implanted radio transmitters in male mice with cardiomyocyte-specific Bmal1 knockout (CBK) and in control mice and recorded 24-h ECGs under diurnal and circadian conditions. We obtained left ventricular monophasic action potentials during pacing in hearts ex vivo. RESULTS: Both RR and QT intervals were longer in conscious CBK than control mice (RR: 117 ± 7 vs 110 ± 9 ms, P < .05; and QT: 53 ± 4 vs 48 ± 2 ms, P < .05). The prolonged QT interval was independent of the slow heart rate in CBK mice. The QT interval exhibited diurnal and circadian rhythms in both CBK and control mice. The action potential duration was longer in CBK than in control mice, indicating slower repolarization. Action potential alternans occurred at lower pacing rate in hearts from CBK than control mice (12 ± 3 vs 16 ± 2 Hz, respectively, P < .05). CONCLUSION: The bradycardic CBK mice have prolonged ventricular repolarization independent of the heart rate. Diurnal and circadian rhythms in repolarization are preserved in CBK mice and are not a consequence of the 24-h rhythm in heart rate. Arrhythmia vulnerability appears to be increased when the cardiac clock is disrupted.


Asunto(s)
Factores de Transcripción ARNTL , Miocitos Cardíacos , Factores de Transcripción ARNTL/genética , Animales , Ritmo Circadiano , Electrocardiografía , Frecuencia Cardíaca , Masculino , Ratones , Ratones Noqueados
14.
PLoS Biol ; 19(4): e3001144, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33872299

RESUMEN

Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry-based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species.


Asunto(s)
Miocardio/metabolismo , Proteoma/metabolismo , Animales , Corazón/fisiología , Ventrículos Cardíacos/química , Ventrículos Cardíacos/metabolismo , Caballos , Humanos , Ratones , Modelos Animales , Miocardio/química , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteómica/métodos , Ratas , Especificidad de la Especie , Porcinos , Pez Cebra
15.
Sci Rep ; 10(1): 16130, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999377

RESUMEN

Cardiovascular and renal complications are the predominant causes of morbidity and mortality amongst patients with diabetes. Development of novel treatments have been hampered by the lack of available animal models recapitulating the human disease. We hypothesized that experimental diabetes in rats combined with a cardiac or renal stressor, would mimic diabetic cardiomyopathy and nephropathy, respectively. Diabetes was surgically induced in male Sprague Dawley rats by 90% pancreatectomy (Px). Isoprenaline (Iso, 1 mg/kg, sc., 10 days) was administered 5 weeks after Px with the aim of inducing cardiomyopathy, and cardiac function and remodeling was assessed by echocardiography 10 weeks after surgery. Left ventricular (LV) fibrosis was quantified by Picro Sirius Red and gene expression analysis. Nephropathy was induced by Px combined with uninephrectomy (Px-UNx). Kidney function was assessed by measurement of glomerular filtration rate (GFR) and urine albumin excretion, and kidney injury was evaluated by histopathology and gene expression analysis. Px resulted in stable hyperglycemia, hypoinsulinemia, decreased C-peptide, and increased glycated hemoglobin (HbA1c) compared with sham-operated controls. Moreover, Px increased heart and LV weights and dimensions and caused a shift from α-myosin heavy chain (MHC) to ß-MHC gene expression. Isoprenaline treatment, but not Px, decreased ejection fraction and induced LV fibrosis. There was no apparent interaction between Px and Iso treatment. The superimposition of Px and UNx increased GFR, indicating hyperfiltration. Compared with sham-operated controls, Px-UNx induced albuminuria and increased urine markers of kidney injury, including neutrophil gelatinase-associated lipocalin (NGAL) and podocalyxin, concomitant with upregulated renal gene expression of NGAL and kidney injury molecule 1 (KIM-1). Whereas Px and isoprenaline separately produced clinical endpoints related to diabetic cardiomyopathy, the combination of the two did not accentuate disease development. Conversely, Px in combination with UNx resulted in several clinical hallmarks of diabetic nephropathy indicative of early disease development.


Asunto(s)
Cardiomiopatías Diabéticas/patología , Nefropatías Diabéticas/patología , Pancreatectomía/métodos , Albuminuria/complicaciones , Animales , Péptido C/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Tasa de Filtración Glomerular , Corazón/fisiopatología , Isoproterenol/farmacología , Riñón/metabolismo , Lipocalina 2/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal/complicaciones
17.
Arterioscler Thromb Vasc Biol ; 40(5): 1207-1219, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32188278

RESUMEN

OBJECTIVE: Intravenous acetaminophen/paracetamol (APAP) is well documented to cause hypotension. Since the patients receiving intravenous APAP are usually critically ill, any severe hemodynamic changes, as with those associated with APAP, can be life-threatening. The mechanism underlying this dangerous iatrogenic effect of APAP was unknown. Approach and Results: Here, we show that intravenous APAP caused transient hypotension in rats, which was attenuated by the Kv7 channel blocker, linopirdine. APAP metabolite N-acetyl-p-benzoquinone imine caused vasodilatation of rat mesenteric arteries ex vivo. This vasodilatation was sensitive to linopirdine and also the calcitonin gene-related peptide antagonist, BIBN 4096. Further investigation revealed N-acetyl-p-benzoquinone imine stimulates calcitonin gene-related peptide release from perivascular nerves, causing a cAMP-dependent activation of Kv7 channels. We also show that N-acetyl-p-benzoquinone imine enhances Kv7.4 and Kv7.5 channels overexpressed in oocytes, suggesting that it can activate Kv7.4 and Kv7.5 channels directly, to elicit vasodilatation. CONCLUSIONS: Direct and indirect activation of Kv7 channels by the APAP metabolite N-acetyl-p-benzoquinone imine decreases arterial tone, which can lead to a drop in blood pressure. Our findings provide a molecular mechanism and potential preventive intervention for the clinical phenomenon of intravenous APAP-dependent transient hypotension.


Asunto(s)
Acetaminofén/toxicidad , Presión Sanguínea/efectos de los fármacos , Hipotensión/inducido químicamente , Canales de Potasio KCNQ/agonistas , Arterias Mesentéricas/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Acetaminofén/metabolismo , Animales , Benzoquinonas , Hipotensión/metabolismo , Hipotensión/fisiopatología , Iminas , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Masculino , Potenciales de la Membrana , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratas Wistar , Transducción de Señal , Xenopus laevis
18.
Acta Physiol (Oxf) ; 229(1): e13444, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31953990

RESUMEN

AIM: Cardiovascular complications, including cardiac arrhythmias, result in high morbidity and mortality in patients with type-2 diabetes mellitus (T2DM). Clinical and experimental data suggest electrophysiological impairment of the natural pacemaker of the diabetic heart. The present study examined sinoatrial node (SAN) arrhythmias in a mouse model of T2DM and physiologically probed their underlying cause. METHODS: Electrocardiograms were obtained from conscious diabetic db/db and lean control db/+ mice. In vivo SAN function was probed through pharmacological autonomic modulation with isoprenaline, atropine and carbachol. Blood pressure stability and heart rate variability (HRV) were evaluated. Intrinsic SAN function was evaluated through ex vivo imaging of spontaneous Ca2+ transients in isolated SAN preparations. RESULTS: While lean control mice showed constant RR intervals during isoprenaline challenge, the diabetic mice experienced SAN arrhythmias with large RR fluctuations in a dose-dependent manner. These arrhythmias were completely abolished by atropine pre-treatment, while carbachol pretreatment significantly increased SAN arrhythmia frequency in the diabetic mice. Blood pressure and HRV were comparable in db/db and db/+ mice, suggesting that neither augmented baroreceptor feedback nor autonomic neuropathy is a likely arrhythmia mechanism. Cycle length response to isoprenaline was comparable in isolated SAN preparations from db/db and db/+ mice; however, Ca2+ spark frequency was significantly increased in db/db mice compared to db/+ at baseline and after isoprenaline. CONCLUSION: Our results demonstrate a dysfunction of cardiac pacemaking in an animal model of T2DM upon challenge with a ß-adrenergic agonist. Ex vivo, higher Ca2+ spark frequency is present in diabetic mice, which may be directly linked to in vivo arrhythmias.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Adrenérgicos/farmacología , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/fisiopatología , Diabetes Mellitus Experimental/complicaciones , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiopatología , Animales , Diabetes Mellitus Experimental/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones
19.
J Cardiovasc Pharmacol ; 74(1): 38-43, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31274841

RESUMEN

Adrenaline (epinephrine) is one of the prime messengers of the fight-or-flight response, favoring the activation of ß-adrenergic receptors. Although general vasoconstriction to nonessential tissues is imperative, the vasodilatory effect of ß-adrenergic receptor activation contends with this. We aimed to determine the dose-dependent effects of adrenaline on hemodynamics and to test whether adrenaline could lower blood pressure (BP) through a ß2-adrenergic pathway. Nineteen Danish landrace pigs were used to pharmacologically probe the hemodynamic effect of adrenaline. Pigs were anesthetized, intubated, and electrocardiogram, systolic BP (SBP), diastolic BP (DBP), and left ventricular pressure (LVP) were monitored continuously. First, we tested the dose-dependent effects of adrenaline (0.01-10 µg/kg). Second, we determined the response to adrenaline (0.3 µg/kg) after atropine, prazosin, and propranolol pretreatment. Finally, we tested the hemodynamic effect of salbutamol in a subset of pigs. All doses of adrenaline increased heart rate, while BP showed a biphasic response: At low doses, adrenaline decreased SBP from 118 ± 3 to 106 ± 4 mm Hg (n = 15; P < 0.05) and DBP from 86 ± 3 to 71 ± 3 (n = 15; P < 0.05), while at high doses, SBP and DBP increased. LVP showed a similar pattern, with a tendency of decreased pressure at low doses, and an increased pressure at high doses (P < 0.05). Pretreatment with autonomic blockers revealed that the increase in BP was due to α-adrenergic activity, while the decrease was due to ß-adrenergic activity. In confirmation, ß-adrenergic activation through salbutamol showed a similar decrease in SBP, DBP, and LVP. We conclude that adrenaline dose-dependently increases heart rate, while producing a biphasic response in BP with a decrease at low doses and an increase at high doses in an anesthetized, large-animal model.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Presión Sanguínea/efectos de los fármacos , Epinefrina/administración & dosificación , Receptores Adrenérgicos beta 2/efectos de los fármacos , Anestesia General , Animales , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , Sus scrofa , Función Ventricular Izquierda/efectos de los fármacos , Presión Ventricular/efectos de los fármacos
20.
Physiol Rep ; 6(13): e13720, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29984555

RESUMEN

Chronic kidney disease (CKD) and uremia increase the risk of heart disease and sudden cardiac death. Coronary artery disease can only partly account for this. The remaining mechanistic links between CKD and sudden death are elusive, but may involve cardiac arrhythmias. For the present study, we hypothesized that a thorough electrophysiological study in mice with CKD would provide us valuable information that could aid in the identification of additional underlying causes of sudden cardiac death in patients with kidney disease. Partial (5/6) nephrectomy (NX) in mice induced mild CKD: plasma urea in NX was 24 ± 1 mmol/L (n = 23) versus 12 ± 1 mmol/L (n = 22) in sham-operated control mice (P < 0.05). Echocardiography did not identify structural or mechanical remodeling in NX mice. Baseline ECG parameters were comparable in conscious NX and control mice; however, the normal 24-h diurnal rhythm in QRS duration was lost in NX mice. Moreover, ß-adrenergic stimulation (isoprenaline, 200 µg/kg intraperitoneally) prolonged QRS duration in conscious NX mice (from 12 ± 1 to 15 ± 2 msec, P < 0.05), but not in sham-operated controls (from 13 ± 1 to 13 ± 2 msec, P > 0.05). No spontaneous arrhythmias were observed in conscious NX mice, and intracardiac pacing in anesthetized mice showed a comparable arrhythmia vulnerability in NX and sham-operated mice. Isoprenaline (2 mg/kg intraperitoneally) changed the duration of the QRS complex from 11.2 ± 0.4 to 11.9 ± 0.5 (P = 0.06) in NX mice and from 10.7 ± 0.6 to 10.6 ± 0.6 (P = 0.50) in sham-operated mice. Ex vivo measurements of cardiac ventricular conduction velocity were comparable in NX and sham mice. Transcriptional activity of Scn5a, Gja1 and several profibrotic genes was similar in NX and sham mice. We conclude that proper kidney function is necessary to maintain diurnal variation in QRS duration and that sympathetic regulation of the QRS duration is altered in kidney disease.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Frecuencia Cardíaca , Corazón/efectos de los fármacos , Isoproterenol/farmacología , Insuficiencia Renal Crónica/fisiopatología , Uremia/fisiopatología , Animales , Corazón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...