Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chronic Illn ; 19(1): 26-39, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34903091

RESUMEN

OBJECTIVE: To evaluate the existing evidence of a machine learning-based classification system that stratifies patients with stroke. METHODS: The authors carried out a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations for a review article. PubMed, MEDLINE, Web of Science, and CINAHL Plus Full Text were searched from January 2015 to February 2021. RESULTS: There are twelve studies included in this systematic review. Fifteen algorithms were used in the included studies. The most common forms of machine learning (ML) used to classify stroke patients were the support vector machine (SVM) (n = 8 studies), followed by random forest (RF) (n = 7 studies), decision tree (DT) (n = 4 studies), gradient boosting (GB) (n = 4 studies), neural networks (NNs) (n = 3 studies), deep learning (n = 2 studies), and k-nearest neighbor (k-NN) (n = 2 studies), respectively. Forty-four features of inputs were used in the included studies, and age and gender are the most common features in the ML model. DISCUSSION: There is no single algorithm that performed better or worse than all others at classifying patients with stroke, in part because different input data require different algorithms to achieve optimal outcomes.


Asunto(s)
Aprendizaje Automático , Accidente Cerebrovascular , Humanos , Adulto , Algoritmos
2.
J Environ Manage ; 325(Pt B): 116663, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343399

RESUMEN

The warming trend over recent decades has already contributed to the increased prevalence of heat-vulnerable chronic diseases in many regions of the world. However, understanding the relationship between heat-vulnerable chronic diseases and heatwaves remains incomplete due to the complexity of such a relationship mingling with human society, urban and natural environments. Our study extends the Social Ecological Theory by constructing a tri-environmental conceptual framework (i.e., across social, built, and natural environments) and contributes to the first nationwide study of the relationship between heat-vulnerable chronic diseases and heatwaves in Australia. We utilize the random forest regression model to explore the importance of heatwaves and 48 tri-environmental variables that contribute to the prevalence of six types of heat-vulnerable diseases. We further apply the local interpretable model-agnostic explanations and the accumulated local effects analysis to interpret how the heat-disease nexus is mediated through tri-environments and varied across urban and rural space. The overall effect of heatwaves on diseases varies across disease types and geographical contexts (latitudes; inland versus coast). The local heat-disease nexus follows a J-shape function-becoming sharply positive after a certain threshold of heatwaves-reflecting that people with the onset of different diseases have various sensitivity and tolerance to heatwaves. However, such effects are relatively marginal compared to tri-environmental variables. We propose a number of policy implications on reducing urban-rural disparity in healthcare access and service distribution, delineating areas, and identifying the variations of sensitivity to heatwaves across urban/rural space and disease types. Our conceptual framework can be further applied to examine the relationship between other environmental problems and health outcomes.


Asunto(s)
Calor , Población Rural , Humanos , Australia/epidemiología , Enfermedad Crónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA