Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diabetologia ; 47(11): 1984-9, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15565370

RESUMEN

AIMS/HYPOTHESIS: Glutamic acid decarboxylase autoantibodies (GADA) are the most frequent beta-cell-specific autoantibodies in type 1 diabetes and in latent autoimmune diabetes in adults (LADA). The autoimmune attack on pancreatic islet cells is associated with a T helper 1 cell (T(h)1) response, mainly represented by IgG(1)-subclass in humans. It has been proposed that the presence of IgG(4) may be associated with a T(h)2 response. The aim of our study was to compare the GADA IgG-subclass distribution between adult patients with type 1 diabetes and LADA. METHODS: Patients with type 1 diabetes (n=45) and patients with LADA (n=60) were included. Radioimmunoprecipitation assay with IgG-subclass specific Sepharose (IgG(1), IgG(2), IgG(3) and IgG(4)) was used to precipitate the antibody/antigen-complex. RESULTS: We only detected IgG(4)-subclass of GADA in subjects with LADA (26.7%; p<0.001). IgG(1) was the most common GADA-subclass in both groups, however IgG(1) as the solely expressed subclass was more common among type 1 diabetic patients (77.8%; p<0.05). The rank order of the frequencies of IgG-subclasses in type 1 diabetes was IgG(1)>IgG(3)>IgG(2)>IgG(4) and in LADA patients IgG(1)>IgG(4)>IgG(2)>IgG(3). CONCLUSIONS/INTERPRETATION: The difference in GADA IgG-subclasses could indicate a different immune response, possibly an altered balance between T(h)1 and T(h)2 cytokine profile in pancreatic islets. This difference could contribute to the slower rate of beta cell destruction in LADA patients, as reflected by a higher C-peptide level at clinical onset.


Asunto(s)
Autoanticuerpos/sangre , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 2/inmunología , Glutamato Descarboxilasa/inmunología , Inmunoglobulina G/sangre , Adolescente , Adulto , Anciano , Péptido C/sangre , Diabetes Mellitus Tipo 1/enzimología , Diabetes Mellitus Tipo 2/enzimología , Humanos , Inmunoglobulina G/clasificación , Persona de Mediana Edad
2.
Tree Physiol ; 21(12-13): 941-50, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11498341

RESUMEN

Young individuals of a single black cottonwood (Populus trichocarpa Torr. & Gray) clone were raised for three growing seasons in whole-tree chambers and exposed to either ambient or elevated atmospheric carbon dioxide concentration ([CO2]), with either a high or a low mineral nutrient supply, in a factorial experimental design. Nutrient availability had a larger effect on growth and dry matter partitioning than did [CO2]. Total biomass did not differ significantly with CO2 treatment when nutrient availability was low. However, elevated [CO2] increased whole-plant biomass by 47% in the high nutrient availability treatment. Carbon dioxide enrichment reduced leaf area ratio and specific leaf area significantly, but had no significant effect on mean leaf size or leaf mass ratio. Root mass ratio was significantly increased by elevated [CO2] at low, but not at high nutrient availability. A modified "demographic harvesting approach" made possible the retrospective estimation of stem and branch dry masses for different years. The relative growth rates of stem and branch were significantly enhanced by elevated [CO2] with high, but not with low nutrient availability. Canopy productivity index (CPI), i.e., the amount of stem and branch wood produced annually per unit leaf area, was raised 12% by elevated [CO2] when nutrient availability was high, but was reduced when nutrient availability was low, because of increased below ground allocation.


Asunto(s)
Salicaceae/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Biomasa , Dióxido de Carbono/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Salicaceae/fisiología , Árboles/fisiología
3.
Nature ; 404(6780): 861-5, 2000 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-10786790

RESUMEN

Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha(-1) yr(-1), with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.


Asunto(s)
Carbono/metabolismo , Árboles , Atmósfera , Ecosistema , Europa (Continente) , Oxígeno/metabolismo , Fotosíntesis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA