Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-38618158

RESUMEN

Coronary CT angiography (cCTA) is a fast non-invasive imaging exam for coronary artery disease (CAD) but struggles with dense calcifications and stents due to blooming artifacts, potentially causing stenosis overestimation. Virtual monoenergetic images (VMIs) at higher keV (e.g., 100 keV) from photon counting detector (PCD) CT have shown promise in reducing blooming artifacts and improving lumen visibility through its simultaneous high-resolution and multi-energy imaging capability. However, most cCTA exams are performed with single-energy CT (SECT) using conventional energy-integrating detectors (EID). Generating VMIs through EID-CT requires advanced multi-energy CT (MECT) scanners and potentially sacrifices temporal resolution. Given these limitations, MECT cCTA exams are not commonly performed on EID-CT and VMIs are not routinely generated. To tackle this, we aim to enhance the multi-energy imaging capability of EID-CT through the utilization of a convolutional neural network to LEarn MONoenergetic imAging from VMIs at Different Energies (LEMONADE). The neural network was trained using ten patient cCTA exams acquired on a clinical PCD-CT (NAEOTOM Alpha, Siemens Healthineers), with 70 keV VMIs as input (which is nominally equivalent to the SECT from EID-CT scanned at 120 kV) and 100 keV VMIs as the target. Subsequently, we evaluated the performance of EID-CT equipped with LEMONADE on both phantom and patient cases (n=10) for stenosis assessment. Results indicated that LEMONADE accurately quantified stenosis in three phantoms, aligning closely with ground truth and demonstrating stenosis percentage area reductions of 13%, 8%, and 9%. In patient cases, it led to a 12.9% reduction in average diameter luminal stenosis when compared to the original SECT without LEMONADE. These outcomes highlight LEMONADE's capacity to enable multi-energy CT imaging, mitigate blooming artifacts, and improve stenosis assessment for the widely available EID-CT. This has a high potential impact as most cCTA exams are performed on EID-CT.

3.
J Imaging Inform Med ; 37(2): 864-872, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38343252

RESUMEN

In CT imaging of the head, multiple image series are routinely reconstructed with different kernels and slice thicknesses. Reviewing the redundant information is an inefficient process for radiologists. We address this issue with a convolutional neural network (CNN)-based technique, synthesiZed Improved Resolution and Concurrent nOise reductioN (ZIRCON), that creates a single, thin, low-noise series that combines the favorable features from smooth and sharp head kernels. ZIRCON uses a CNN model with an autoencoder U-Net architecture that accepts two input channels (smooth- and sharp-kernel CT images) and combines their salient features to produce a single CT image. Image quality requirements are built into a task-based loss function with a smooth and sharp loss terms specific to anatomical regions. The model is trained using supervised learning with paired routine-dose clinical non-contrast head CT images as training targets and simulated low-dose (25%) images as training inputs. One hundred unique de-identified clinical exams were used for training, ten for validation, and ten for testing. Visual comparisons and contrast measurements of ZIRCON revealed that thinner slices and the smooth-kernel loss function improved gray-white matter contrast. Combined with lower noise, this increased visibility of small soft-tissue features that would be otherwise impaired by partial volume averaging or noise. Line profile analysis showed that ZIRCON images largely retained sharpness compared to the sharp-kernel input images. ZIRCON combined desirable image quality properties of both smooth and sharp input kernels into a single, thin, low-noise series suitable for both brain and skull imaging.

4.
Phys Med Biol ; 69(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181426

RESUMEN

Objectives.To improve quality of coronary CT angiography (CCTA) images using a generalizable motion-correction algorithm.Approach. A neural network with attention gate and spatial transformer (ATOM) was developed to correct coronary motion. Phantom and patient CCTA images (39 males, 32 females, age range 19-92, scan date 02/2020 to 10/2021) retrospectively collected from dual-source CT were used to create training, development, and testing sets corresponding to 140- and 75 ms temporal resolution, with 75 ms images as labels. To test generalizability, ATOM was deployed for locally adaptive motion-correction in both 140- and 75 ms patient images. Objective metrics were used to assess motion-corrupted and corrected phantom and patient images, including structural-similarity-index (SSIM), dice-similarity-coefficient (DSC), peak-signal-noise-ratio (PSNR), and normalized root-mean-square-error (NRMSE). In objective quality assessment, ATOM was compared with several baseline networks, including U-net, U-net plus attention gate, U-net plus spatial transformer, VDSR, and ResNet. Two cardiac radiologists independently interpreted motion-corrupted and -corrected images at 75 and 140 ms in a blinded fashion and ranked diagnostic image quality (worst to best: 1-4, no ties).Main results. ATOM improved quality metrics (p< 0.05) before/after correction: in phantom, SSIM 0.87/0.95, DSC 0.85/0.93, PSNR 19.4/22.5, NRMSE 0.38/0.27; in patient images, SSIM 0.82/0.88, DSC 0.88/0.90, PSNR 30.0/32.0, NRMSE 0.16/0.12. ATOM provided more consistent improvement of objective image quality, compared to the presented baseline networks. The motion-corrected images received better ranks than un-corrected at the same temporal resolution (p< 0.05): 140 ms images 1.65/2.25, and 75 ms images 3.1/3.2. The motion-corrected 75 ms images received the best rank in 65% of testing cases. A fair-to-good inter-reader agreement was observed (Kappa score 0.58).Significance. ATOM reduces motion artifacts, improving visualization of coronary arteries. This algorithm can be used to virtually improve temporal resolution in both single- and dual-source CT.


Asunto(s)
Artefactos , Tomografía Computarizada por Rayos X , Masculino , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Movimiento (Física) , Angiografía Coronaria/métodos , Procesamiento de Imagen Asistido por Computador/métodos
5.
J Comput Assist Tomogr ; 48(1): 104-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37566794

RESUMEN

OBJECTIVE: Pulse pileup effects occur when pulses occur so close together that they fall on top of one another, resulting in count loss and errors in energy thresholding. To date, there has been little work systematically detailing the quantitative effects of pulse pileup on material decomposition accuracy for photon-counting detector (PCD) computed tomography (CT). Our aim in this work was to quantify the effects of pulse pileup on single-energy and multienergy CT images, including low-energy bin (BL), high-energy bin (BH), iodine map, and virtual noncontrast images from a commercial PCD-CT. METHODS: Scans of a 20-cm diameter multienergy CT phantom with 10 solid inserts were acquired at a fixed tube potential as the tube current was varied across the available range. Four types of images (BL, BH, iodine map, and virtual noncontrast) were reconstructed using an iterative reconstruction algorithm at strength 2, a quantitative reconstruction kernel (Qr40), 2-/1-mm slice thickness/increment, and a 210-mm field-of-view. The mean and standard deviation of CT numbers were recorded and the ratios of CT number between BL and BH images were calculated and plotted, along with noise versus tube current and noise × versus tube current. RESULTS: As tube current was increased, the range of variations in CT numbers was less than 13.4 HU for all inserts and image types evaluated. Noise × versus tube current showed a small positive slope equal to a noise increase from 100 mA of 10% at 500 mA and 15% at 900 mA compared with what would be expected if the slope was zero. CONCLUSIONS: Minimal impact on single-energy and multienergy CT numbers and noise performance was observed for the evaluated clinical PCD-CT system.


Asunto(s)
Yodo , Fotones , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Algoritmos
6.
J Cardiovasc Comput Tomogr ; 18(1): 56-61, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37945454

RESUMEN

BACKGROUND: To quantify differences in coronary artery stenosis severity in patients with calcified lesions between conventional energy-integrating detector (EID) CT and ultra-high-resolution (UHR) photon-counting-detector (PCD) CT. METHODS: Patients undergoing clinically indicated coronary CT angiography were prospectively recruited and scanned first on an EID-CT (SOMATOM Force, Siemens Healthineers) and then a PCD-CT (NAEOTOM Alpha, Siemens Healthineers) on the same day. EID-CT was performed with standard mode (192 â€‹× â€‹0.6 â€‹mm detector collimation) following our clinical protocol. PCD-CT scans were performed under UHR mode (120 â€‹× â€‹0.2 â€‹mm detector collimation). For each patient, left main, left anterior descending, right coronary artery, and circumflex were reviewed and the most severe stenosis from dense calcification for each coronary was quantified using commercial software. Additionally, each measured stenosis was assigned a severity category based on percent diameter stenosis, and changes in severity category across EID-CT and PCD-CT were assessed. RESULTS: A total of 23 patients were enrolled, with 34 coronary artery stenoses analyzed. Stenosis was significantly reduced in PCD-CT compared to EID-CT (p â€‹< â€‹0.001), resulting in an average of 11% (SD â€‹= â€‹11%) reduction in percent diameter stenosis. Among the 34 lesions, 15 changed in stenosis severity category: 3 went from moderate to minimal, 1 from moderate to mild, 9 from mild to minimal, and 2 from minimal to mild with the use of PCD-CT compared to EID-CT. CONCLUSION: Use of UHR PCD-CT decreased percent diameter stenosis by an average of 11% relative to EID-CT, resulting in 13 of 34 stenoses being downgraded in stenosis severity category, potentially sparing patients from unnecessary intervention.


Asunto(s)
Calcinosis , Estenosis Coronaria , Humanos , Constricción Patológica , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Tomografía Computarizada por Rayos X/métodos , Estenosis Coronaria/diagnóstico por imagen , Calcinosis/diagnóstico por imagen
7.
AJR Am J Roentgenol ; 222(3): e2329778, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37991334

RESUMEN

BACKGROUND. The higher spatial resolution and image contrast for iodine-containing tissues of photon-counting detector (PCD) CT may address challenges in evaluating small calcified vessels when performing lower extremity CTA by energy-integrating detector (EID) CTA. OBJECTIVE. The purpose of the study was to compare the evaluation of infrapopliteal vasculature between lower extremity CTA performed using EID CT and PCD CT. METHODS. This prospective study included 32 patients (mean age, 69.7 ± 11.3 [SD] years; 27 men, five women) who underwent clinically indicated lower extremity EID CTA between April 2021 and March 2022; participants underwent investigational lower extremity PCD CTA later the same day as EID CTA using a reduced IV contrast media dose. Two radiologists independently reviewed examinations in two sessions, each containing a random combination of EID CTA and PCD CTA examinations; the readers assessed the number of visualized fibular perforators, characteristics of stenoses at 11 infrapopliteal segmental levels, and subjective arterial sharpness. RESULTS. Mean IV contrast media dose was 60.0 ± 11.0 (SD) mL for PCD CTA versus 139.6 ± 11.8 mL for EID CTA (p < .001). The number of identified fibular perforators per lower extremity was significantly higher for PCD CTA than for EID CTA for reader 1 (R1) (mean ± SD, 6.4 ± 3.2 vs 4.2 ± 2.4; p < .001) and reader 2 (R2) (8.8 ± 3.4 vs 7.6 ± 3.3; p = .04). Reader confidence for assessing stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 82.3 ± 20.3 vs 78.0 ± 20.2; p < .001) but not R2 (89.8 ± 16.7 vs 90.6 ± 7.1; p = .24). The number of segments per lower extremity with total occlusion was significantly lower for PCD CTA than for EID CTA for R2 (mean ± SD, 0.5 ± 1.3 vs 0.9 ± 1.7; p = .04) but not R1 (0.6 ± 1.3 vs 1.0 ± 1.5; p = .07). The number of segments per lower extremity with clinically significant nonocclusive stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 2.2 ± 2.2 vs 1.6 ± 1.7; p = .01) but not R2 (1.1 ± 2.0 vs 1.1 ± 1.4; p = .89). Arterial sharpness was significantly greater for PCD CTA than for EID CTA for R1 (mean ± SD, 3.2 ± 0.5 vs 1.8 ± 0.5; p < .001) and R2 (3.2 ± 0.4 vs 1.7 ± 0.8; p < .001). CONCLUSION. PCD CTA yielded multiple advantages relative to EID CTA for visualizing small infrapopliteal vessels and characterizing associated plaque. CLINICAL IMPACT. The use of PCD CTA may improve vascular evaluation in patients with peripheral arterial disease.


Asunto(s)
Medios de Contraste , Fotones , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Prospectivos , Constricción Patológica , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Extremidad Inferior/diagnóstico por imagen
8.
Radiology ; 309(3): e230853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38051190

RESUMEN

Background Compared with energy-integrating detector (EID) CT, the improved resolution of photon-counting detector (PCD) CT coupled with high-energy virtual monoenergetic images (VMIs) has been shown to decrease calcium blooming on images in phantoms and cadaveric specimens. Purpose To determine the impact of dual-source PCD CT on visual and quantitative estimation of percent diameter luminal stenosis compared with dual-source EID CT in patients. Materials and Methods This prospective study recruited consecutive adult patients from an outpatient facility between January and March 2022. Study participants underwent clinical dual-source EID coronary CT angiography followed by a research dual-source PCD CT examination. For PCD CT, multienergy data were used to create VMIs at 50 and 100 keV. Two readers independently reviewed EID CT images followed by PCD CT images after a washout period. Readers visually graded the most severe stenosis in terms of percent diameter luminal stenosis for the left main, left anterior descending, right, and circumflex coronary arteries, unblinded to scanner type. Quantitative measures of percent stenosis were made using commercial software. Visual and quantitative estimates of percent stenosis were compared between EID CT and PCD CT using the Wilcoxon signed-rank test. Results A total of 25 participants (median age, 59 years [range, 18-78 years]; 16 male participants) were enrolled. On EID CT images, readers 1 and 2 identified 39 and 32 luminal stenoses, respectively, with a percent diameter luminal stenosis greater than 0%. Visual estimates of percent stenosis were lower on PCD CT images than EID CT images (reader 1: median 20.6% [IQR, 8.8%-61.2%] vs 31.8% [IQR, 12.9%-69.7%], P < .001; reader 2: 6.5% [IQR, 0.4%-54.1%] vs 22.9% [IQR, 1.8%-67.4%], P = .002). No difference was observed between EID CT and PCD CT for quantitative measures of percent stenosis (median difference, -1.5% [95% CI: -3.0%, 2.5%]; P = .51). Conclusion Relative to using EID CT, using PCD CT led to decreases in visual estimates of percent stenosis. © RSNA, 2023 See also the editorial by Murphy and Donnelly in this issue.


Asunto(s)
Angiografía por Tomografía Computarizada , Tomografía Computarizada por Rayos X , Adulto , Humanos , Masculino , Persona de Mediana Edad , Angiografía por Tomografía Computarizada/métodos , Constricción Patológica , Angiografía Coronaria/métodos , Fantasmas de Imagen , Fotones , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto Joven , Anciano , Femenino
9.
Br J Radiol ; 96(1152): 20230189, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750939

RESUMEN

Photon counting detector (PCD) CT represents the newest advance in CT technology, with improved radiation dose efficiency, increased spatial resolution, inherent spectral imaging capabilities, and the ability to eliminate electronic noise. Its design fundamentally differs from conventional energy integrating detector CT because photons are directly converted to electrical signal in a single step. Rather than converting X-rays to visible light and having an output signal that is a summation of energies, PCD directly counts each photon and records its individual energy information. The current commercially available PCD-CT utilizes a dual-source CT geometry, which allows 66 ms cardiac temporal resolution and high-pitch (up to 3.2) scanning. This can greatly benefit pediatric patients by facilitating high quality fast scanning to allow sedation-free imaging. The energy-resolving nature of the utilized PCDs allows "always-on" dual-energy imaging capabilities, such as the creation of virtual monoenergetic, virtual non-contrast, virtual non-calcium, and other material-specific images. These features may be combined with high-resolution imaging, made possible by the decreased size of individual detector elements and the absence of interelement septa. This work reviews the foundational concepts associated with PCD-CT and presents examples to highlight the benefits of PCD-CT in the pediatric population.


Asunto(s)
Fotones , Tomografía Computarizada por Rayos X , Humanos , Niño , Tomografía Computarizada por Rayos X/métodos , Rayos X , Fantasmas de Imagen
10.
Radiographics ; 43(5): e220158, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37022956

RESUMEN

Photon-counting detector (PCD) CT is an emerging technology that has led to continued innovation and progress in diagnostic imaging after it was approved by the U.S. Food and Drug Administration for clinical use in September 2021. Conventional energy-integrating detector (EID) CT measures the total energy of x-rays by converting photons to visible light and subsequently using photodiodes to convert visible light to digital signals. In comparison, PCD CT directly records x-ray photons as electric signals, without intermediate conversion to visible light. The benefits of PCD CT systems include improved spatial resolution due to smaller detector pixels, higher iodine image contrast, increased geometric dose efficiency to allow high-resolution imaging, reduced radiation dose for all body parts, multienergy imaging capabilities, and reduced artifacts. To recognize these benefits, diagnostic applications of PCD CT in musculoskeletal, thoracic, neuroradiologic, cardiovascular, and abdominal imaging must be optimized and adapted for specific diagnostic tasks. The diagnostic benefits and clinical applications resulting from PCD CT in early studies have allowed improved visualization of key anatomic structures and radiologist confidence for some diagnostic tasks, which will continue as PCD CT evolves and clinical use and applications grow. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material. See the invited commentary by Ananthakrishnan in this issue.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Humanos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Intensificación de Imagen Radiográfica/métodos , Fotones
11.
Med Phys ; 50(7): 4173-4181, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37069830

RESUMEN

BACKGROUND: Small coronary arteries containing stents pose a challenge in CT imaging due to metal-induced blooming artifact. High spatial resolution imaging capability is as the presence of highly attenuating materials limits noninvasive assessment of luminal patency. PURPOSE: The purpose of this study was to quantify the effective lumen diameter within coronary stents using a clinical photon-counting-detector (PCD) CT in concert with a convolutional neural network (CNN) denoising algorithm, compared to an energy-integrating-detector (EID) CT system. METHODS: Seven coronary stents of different materials and inner diameters between 3.43 and 4.72 mm were placed in plastic tubes of diameters 3.96-4.87 mm containing 20 mg/mL of iodine solution, mimicking stented contrast-enhanced coronary arteries. Tubes were placed parallel with or perpendicular to the scanner's z-axis in an anthropomorphic phantom emulating an average-sized patient and scanned with a clinical EID-CT and PCD-CT. EID scans were performed using our standard coronary computed tomography angiography (cCTA) protocol (120 kV, 180 quality reference mAs). PCD scans were performed using the ultra-high-resolution (UHR) mode (120 × 0.2 mm collimation) at 120 kV with tube current adjusted so that CTDIvol was matched to that of EID scans. EID images were reconstructed per our routine clinical protocol (Br40, 0.6 mm thickness), and with the sharpest available kernel (Br69). PCD images were reconstructed at a thickness of 0.6 mm and a dedicated sharp kernel (Br89) which is only possible with the PCD UHR mode. To address increased image noise introduced by the Br89 kernel, an image-based CNN denoising algorithm was applied to the PCD images of stents scanned parallel to the scanner's z-axis. Stents were segmented based on full-width half maximum thresholding and morphological operations, from which effective lumen diameter was calculated and compared to reference sizes measured with a caliper. RESULTS: Substantial blooming artifacts were observed on EID Br40 images, resulting in larger stent struts and reduced lumen diameter (effective diameter underestimated by 41% and 47% for parallel and perpendicular orientations, respectively). Blooming artifacts were observed on EID Br69 images with 19% and 31% underestimation of lumen diameter compared to the caliper for parallel and perpendicular scans, respectively. Overall image quality was substantially improved on PCD, with higher spatial resolution and reduced blooming artifacts, resulting in the clearer delineation of stent struts. Effective lumen diameters were underestimated by 9% and 19% relative to the reference for parallel and perpendicular scans, respectively. CNN reduced image noise by about 50% on PCD images without impacting lumen quantification (<0.3% difference). CONCLUSION: The PCD UHR mode improved in-stent lumen quantification for all seven stents as compared to EID images due to decreased blooming artifacts. Implementation of CNN denoising algorithms to PCD data substantially improved image quality.


Asunto(s)
Vasos Coronarios , Tomografía Computarizada por Rayos X , Humanos , Vasos Coronarios/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Angiografía por Tomografía Computarizada/métodos , Redes Neurales de la Computación , Fantasmas de Imagen , Stents , Fotones
12.
Skeletal Radiol ; 52(9): 1651-1659, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36971838

RESUMEN

OBJECTIVE: The feasibility of low-dose photon-counting detector (PCD) CT to measure alpha and acetabular version angles of femoroacetabular impingement (FAI). MATERIAL AND METHODS: FAI patients undergoing an energy-integrating detector (EID) CT underwent an IRB-approved prospective ultra-high-resolution (UHR) PCD-CT between 5/2021 and 12/2021. PCD-CT was dose-matched to the EID-CT or acquired at 50% dose. Simulated 50% dose EID-CT images were generated. Two radiologists evaluated randomized EID-CT and PCD-CT images and measured alpha and acetabular version angles on axial image slices. Image quality (noise, artifacts, and visualization of cortex) and confidence in non-FAI pathology were rated on a 4-point scale (3 = adequate). Preference tests of standard dose PCD-CT, 50% dose PCD-CT, and 50% dose EID-CT relative to standard dose EID-CT were performed using Wilcoxon Rank test. RESULTS: 20 patients underwent standard dose EID-CT (~ CTDIvol, 4.5 mGy); 10 patients, standard dose PCD-CT (4.0 mGy); 10 patients, 50% PCD-CT (2.6 mGy). Standard dose EID-CT images were scored as adequate for diagnostic task in all categories (range 2.8-3.0). Standard dose PCD-CT images scored higher than the reference in all categories (range 3.5-4, p < 0.0033). Half-dose PCD-CT images also scored higher for noise and cortex visualization (p < 0.0033) and equivalent for artifacts and visualization of non-FAI pathology. Finally, simulated 50% EID-CT images scored lower in all categories (range 1.8-2.4, p < 0.0033). CONCLUSIONS: Dose-matched PCD-CT is superior to EID-CT for alpha angle and acetabular version measurement in the work up of FAI. UHR-PCD-CT enables 50% radiation dose reduction compared to EID while remaining adequate for the imaging task.


Asunto(s)
Pinzamiento Femoroacetabular , Humanos , Pinzamiento Femoroacetabular/diagnóstico por imagen , Estudios Prospectivos , Estudios de Factibilidad , Fotones , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Dosis de Radiación
13.
Med Phys ; 49(10): 6346-6358, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35983992

RESUMEN

BACKGROUND: Dual-energy CT with virtual noncalcium (VNCa) images allows the evaluation of focal intramedullary bone marrow involvement in patients with multiple myeloma. However, current commercial VNCa techniques suffer from excessive image noise and artifacts due to material decomposition used in synthesizing VNCa images. OBJECTIVES: In this work, we aim to improve VNCa image quality for the assessment of focal multiple myeloma, using an Artificial intelligence based Generalizable Algorithm for mulTi-Energy CT (AGATE) method. MATERIALS AND METHODS: AGATE method used a custom dual-task convolutional neural network (CNN) that concurrently carries out material classification and quantification. The material classification task provided an auxiliary regularization to the material quantification task. CNN parameters were optimized using custom loss functions that involved cross-entropy, physics-informed constraints, structural redundancy in spectral and material images, and texture information in spectral images. For training data, CT phantoms (diameters 30 to 45 cm) with tissue-mimicking inserts were scanned on a third generation dual-source CT system. Scans were performed at routine dose and half of the routine dose. Small image patches (i.e., 40 × 40 pixels) of tissue-mimicking inserts with known basis material densities were extracted for training samples. Numerically simulated insert materials with various shapes increased diversity of training samples. Generalizability of AGATE was evaluated using CT images from phantoms and patients. In phantoms, material decomposition accuracy was estimated using mean-absolute-percent-error (MAPE), using physical inserts that were not used during the training. Noise power spectrum (NPS) and modulation transfer function (MTF) were compared across phantom sizes and radiation dose levels. Five patients with multiple myeloma underwent dual-energy CT, with VNCa images generated using a commercial method and AGATE. Two fellowship-trained musculoskeletal radiologists reviewed the VNCa images (commercial and AGATE) side-by-side using a dual-monitor display, blinded to VNCa type, rating the image quality for focal multiple myeloma lesion visualization using a 5-level Likert comparison scale (-2 = worse visualization and diagnostic confidence, -1 = worse visualization but equivalent diagnostic confidence, 0 = equivalent visualization and diagnostic confidence, 1 = improved visualization but equivalent diagnostic confidence, 2 = improved visualization and diagnostic confidence). A post hoc assignment of comparison ratings was performed to rank AGATE images in comparison to commercial ones. RESULTS: AGATE demonstrated consistent material quantification accuracy across phantom sizes and radiation dose levels, with MAPE ranging from 0.7% to 4.4% across all testing materials. Compared to commercial VNCa images, the AGATE-synthesized VNCa images yielded considerably lower image noise (50-77% noise reduction) without compromising noise texture or spatial resolution across different phantom sizes and two radiation doses. AGATE VNCa images had markedly reduced area under NPS curves and maintained NPS peak frequency (0.7 lp/cm to 1.0 lp/cm), with similar MTF curves (50% MTF at 3.0 lp/cm). In patients, AGATE demonstrated reduced image noise and artifacts with improved delineation of focal multiple myeloma lesions (all readers comparison scores indicating improved overall diagnostic image quality [scores 1 or 2]). CONCLUSIONS: AGATE demonstrated reduced noise and artifacts in VNCa images and ability to improve visualization of bone marrow lesions for assessing multiple myeloma.


Asunto(s)
Aprendizaje Profundo , Mieloma Múltiple , Inteligencia Artificial , Humanos , Mieloma Múltiple/diagnóstico por imagen , Fantasmas de Imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos
14.
Eur Radiol ; 32(10): 7079-7086, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35689699

RESUMEN

OBJECTIVE: To evaluate ultra-high-resolution (UHR) imaging of large joints using an investigational photon-counting detector (PCD) CT. MATERIALS AND METHODS: Patients undergoing clinical shoulder or pelvis energy-integrating-detector (EID) CT exam were scanned using the UHR mode of the PCD-CT system. Axial EID-CT images (1-mm sections) and PCD-CT images (0.6-mm sections) were reconstructed using Br62/Br64 and Br76 kernels, respectively. Two musculoskeletal radiologists rated visualization of anatomic structures using a 5-point Likert scale. Wilcoxon rank-sum test was used for statistical analysis of reader scores, and paired t-test was used for comparing bone CT numbers and image noise from PCD-CT and EID-CT. RESULTS: Thirty-two patients (17 shoulders and 15 pelvis) were prospectively recruited for this feasibility study. Mean age for shoulder exams was 67.3 ± 15.5 years (11 females) and 47.2 ± 15.8 years (11 females) for pelvis exams. The mean volume CT dose index was lower on PCD-CT compared to that on EID-CT (shoulders: 18 mGy vs. 34 mGy, pelvis: 11.6 mGy vs. 16.7 mGy). PCD-CT was rated significantly better than EID-CT (p < 0.001) for anatomic-structure visualization. Trabecular delineation in shoulders (mean score = 4.24 ± 0.73) and femoroacetabular joint visualization in the pelvis (mean score = 3.67 ± 1.03) received the highest scores. PCD-CT demonstrated significant increase in bone CT number (p < 0.001) relative to EID-CT; no significant difference in image noise was found between PCD-CT and EID-CT. CONCLUSION: The evaluated PCD-CT system provided improved visualization of osseous structures in the shoulders and pelvises at a 31-47% lower radiation dose compared to EID-CT. KEY POINTS: • A full field-of-view PCD-CT with 0.151 mm × 0.176 mm detector pixel size (isocenter) facilitates bilateral, high-resolution imaging of shoulders and pelvis. • The evaluated investigational PCD-CT system was rated superior by two musculoskeletal radiologists for anatomic structure visualization in shoulders and pelvises despite a 31-47% lower radiation dose compared to EID-CT. • PCD-CT demonstrated significantly higher bone CT number compared to EID-CT, while no significant difference in image noise was observed between PCD-CT and EID-CT despite a 31-47% dose reduction on PCD-CT.


Asunto(s)
Fotones , Hombro , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Femenino , Humanos , Persona de Mediana Edad , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos
15.
Invest Radiol ; 57(11): 734-741, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35703439

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the clinical impact of a higher spatial resolution, full field-of-view investigational photon-counting detector computed tomography (PCD-CT) on radiologist confidence in imaging findings and diagnosis of usual interstitial pneumonia (UIP) compared with conventional energy-integrating detector CT (EID-CT). MATERIALS AND METHODS: Patients suspected of interstitial lung disease were scanned on a PCD-CT system after informed consent and a clinically indicated EID-CT. In 2 sessions, 3 thoracic radiologists blinded to clinical history and scanner type evaluated CT images of the right and left lungs separately on EID- or PCD-CT, reviewing each lung once/session, rating confidence in imaging findings of reticulation, traction bronchiectasis, honeycombing, ground-glass opacities (GGOs), mosaic pattern, and lower lobe predominance (100-point scale: 0-33, likely absent; 34-66, indeterminate; 67-100, likely present). Radiologists also rated confidence for the probability of UIP (0-20, normal; 21-40, inconsistent with UIP; 41-60, indeterminate UIP; 61-81; probable UIP; 81-100, definite UIP) and graded image quality. Because a confidence scale of 50 represented completely equivocal findings, magnitude score (the absolute value of confidence scores from 50) was used for analysis (higher scores were more confident). Image noise was measured for each modality. The magnitude score was compared using linear mixed effects regression. The consistency of findings and diagnosis between 2 scanners were evaluated using McNemar test and weighted κ statistics, respectively. RESULTS: A total of 30 patients (mean age, 68.8 ± 11.0 years; M:F = 18:12) underwent conventional EID-CT (median CTDI vol , 7.88 mGy) and research PCD-CT (median CTDI vol , 6.49 mGy). The magnitude scores in PCD-CT were significantly higher than EID-CT for imaging findings of reticulation (40.7 vs 38.3; P = 0.023), GGO (34.4 vs 31.7; P = 0.019), and mosaic pattern (38.6 vs 35.9; P = 0.013), but not for other imaging findings ( P ≥ 0.130) or confidence in UIP (34.1 vs 22.2; P < 0.059). Magnitude score of probability of UIP in PCD-CT was significantly higher than EID-CT in one reader (26.0 vs 21.5; P = 0.009). Photon-counting detector CT demonstrated a decreased number of indeterminate GGO (17 vs 26), an increased number of unlikely GGO (74 vs 50), and an increased number of likely reticulations (140 vs 130) relative to EID-CT. Interobserver agreements among 3 readers for imaging findings and probability of UIP were similar between PCD-CT and EID-CT (intraclass coefficient: 0.507-0.818 vs 0.601-0.848). Photon-counting detector CT had higher scores in overall image quality (4.84 ± 0.38) than those in EID-CT (4.02 ± 0.40; P < 0.001) despite increased image noise (mean 85.5 vs 36.1 HU). CONCLUSIONS: Photon-counting detector CT provided better image quality and improved the reader confidence for presence or absence of imaging findings of reticulation, GGO, and mosaic pattern with idiosyncratic improvement in confidence in UIP presence.


Asunto(s)
Fibrosis Pulmonar Idiopática , Anciano , Humanos , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...