Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(9): e0239641, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32941543

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0233048.].

2.
PLoS One ; 15(5): e0233048, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32453791

RESUMEN

Panagrolaimus sp. DAW1, a nematode cultured from the Antarctic, has the extraordinary physiological ability to survive total intracellular freezing throughout all of its compartments. While a few other organisms, all nematodes, have subsequently also been found to survive freezing in this manner, P. sp. DAW1 has so far shown the highest survival rates. In addition, P. sp. DAW1 is also, depending on the rate or extent of freezing, able to undergo cryoprotective dehydration. In this study, the proteome of P. sp DAW1 is explored, highlighting a number of differentially expressed proteins and pathways that occur when the nematodes undergo intracellular freezing. Among the strongest signals after being frozen is an upregulation of proteases and the downregulation of cytoskeletal and antioxidant activity, the latter possibly accumulated before freezing much in the way the sugar trehalose has been shown to be stored during acclimation.


Asunto(s)
Aclimatación/fisiología , Redes Reguladoras de Genes , Proteómica/métodos , Rabdítidos/fisiología , Animales , Antioxidantes/metabolismo , Frío , Regulación de la Expresión Génica , Proteínas del Helminto/metabolismo , Péptido Hidrolasas/metabolismo , Mapas de Interacción de Proteínas
3.
iScience ; 21: 587-602, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31759330

RESUMEN

Most animal species reproduce sexually and fully parthenogenetic lineages are usually short lived in evolution. Still, parthenogenesis may be advantageous as it avoids the cost of sex and permits colonization by single individuals. Panagrolaimid nematodes have colonized environments ranging from arid deserts to Arctic and Antarctic biomes. Many are obligatory meiotic parthenogens, and most have cryptobiotic abilities, being able to survive repeated cycles of complete desiccation and freezing. To identify systems that may contribute to these striking abilities, we sequenced and compared the genomes and transcriptomes of parthenogenetic and outcrossing panagrolaimid species, including cryptobionts and non-cryptobionts. The parthenogens are triploids, most likely originating through hybridization. Adaptation to cryptobiosis shaped the genomes of panagrolaimid nematodes and is associated with the expansion of gene families and signatures of selection on genes involved in cryptobiosis. All panagrolaimids have acquired genes through horizontal gene transfer, some of which are likely to contribute to cryptobiosis.

4.
Data Brief ; 27: 104587, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31763380

RESUMEN

Fish scales are mineralized structures that play important roles in protection and mineral homeostasis. This tissue expresses multiple estrogen receptor subtypes and can be targeted by estrogens or estrogenic endocrine-disrupting compounds, but their effects are poorly explored. The transcriptome data here presented support the findings reported in the research article "Genistein and estradiol have common and specific impacts on the sea bass (Dicentrarchus labrax) skin-scale barrier" [1]. Juvenile sea bass were exposed to estradiol and the phytoestrogen genistein for 1 and 5 days, by intraperitoneal injections, and the effects on scale transcript expression were analysed by RNA-seq using an Illumina Hi-seq 1500. The raw reads of the 30 libraries produced have been deposited in the NCBI-SRA database with the project accession number SRP102504. Mapping of RNA-seq reads against the sea bass reference genome using the Cufflinks/TopHat package identified 371 genes that had significant (FDR<0.05) differential expression with the estradiol or genistein treatments in relation to the control scales at each exposure time, 254 of which presented more than a 2-fold change in expression. The identity of the differentially expressed genes was obtained using both automatic and manual annotations against multiple public sequence databases and they were grouped according to their patterns of expression using hierarchical clustering and heat-maps. The biological processes and KEGG pathways most significantly affected by the estradiol and/or genistein treatments were identified using Cytoscape/ClueGO enrichment analyses.

5.
J Steroid Biochem Mol Biol ; 195: 105448, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31421232

RESUMEN

Teleost fish scales play important roles in animal protection and homeostasis. They can be targeted by endogenous estrogens and by environmental estrogenic endocrine disruptors. The phytoestrogen genistein is ubiquitous in the environment and in aquaculture feeds and is a disruptor of estrogenic processes in vertebrates. To test genistein disrupting actions in teleost fish we used a minimally invasive approach by analysing scales plucked from the skin of sea bass (Dicentrarchus labrax). Genistein transactivated all three fish nuclear estrogen receptors and was most potent with the Esr2, had the highest efficacy with Esr1, but reached, in all cases, transactivation levels lower than those of estradiol. RNA-seq revealed 254 responsive genes in the sea bass scales transcriptome with an FDR < 0.05 and more than 2-fold change in expression, 1 or 5 days after acute exposure to estradiol or to genistein. 65 genes were specifically responsive to estradiol and 106 by genistein while 83 genes were responsive to both compounds. Estradiol specifically regulated genes of protein/matrix turnover and genistein affected sterol biosynthesis and regeneration, while innate immune responses were affected by both compounds. This comprehensive study revealed the impact on the fish scale transcriptome of estradiol and genistein, providing a solid background to further develop fish scales as a practical screening tool for endocrine disrupting chemicals in teleosts.


Asunto(s)
Escamas de Animales/efectos de los fármacos , Lubina/genética , Disruptores Endocrinos/farmacología , Estradiol/farmacología , Genisteína/farmacología , Piel/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Escamas de Animales/metabolismo , Animales , Células HEK293 , Humanos , Receptores de Estrógenos/genética , Piel/metabolismo
6.
Sci Rep ; 9(1): 952, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700813

RESUMEN

The pre-conditioning of adult marine invertebrates to altered conditions, such as low pH, can significantly impact offspring outcomes, a process which is often referred to as transgenerational plasticity (TGP). This study describes for the first time, the gene expression profiles associated with TGP in the green sea urchin Psammechinus miliaris and evaluates the transcriptional contribution to larval resilience. RNA-Seq was used to determine how the expression profiles of larvae spawned into low pH from pre-acclimated adults differed to those of larvae produced from adults cultured under ambient pH. The main findings demonstrated that adult conditioning to low pH critically pre-loads the embryonic transcriptional pool with antioxidants to prepare the larvae for the "new" conditions. In addition, the classic cellular stress response, measured via the production of heat shock proteins (the heat shock response (HSR)), was separately evaluated. None of the early stage larvae either spawned in low pH (produced from both ambient and pre-acclimated adults) or subjected to a separate heat shock experiment were able to activate the full HSR as measured in adults, but the capacity to mount an HSR increased as development proceeded. This compromised ability clearly contributes to the vulnerability of early stage larvae to acute environmental challenge.


Asunto(s)
Adaptación Fisiológica/genética , Erizos de Mar/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Concentración de Iones de Hidrógeno , Larva/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Agua de Mar , Transcriptoma/genética
7.
Biol Open ; 6(12): 1953-1959, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29175859

RESUMEN

Panagrolaimus sp. DAW1 is a freeze-tolerant Antarctic nematode which survives extensive intracellular ice formation. The molecular mechanisms of this extreme adaptation are still poorly understood. We recently showed that desiccation-enhanced RNA interference (RNAi) soaking can be used in conjunction with quantitative polymerase chain reaction (qPCR) to screen for phenotypes associated with reduced expression of candidate genes in Panagrolaimus sp. DAW1. Here, we present the use of this approach to investigate the role of trehalose synthesis genes in this remarkable organism. Previous studies have shown that acclimating Panagrolaimus sp. DAW1 at 5°C before freezing or desiccation substantially enhances survival. In this study, the expression of tps-2 and other genes associated with trehalose metabolism, as well as lea-1, hsp-70 and gpx-1, in cold-acclimated and non-acclimated nematodes was analyzed using qPCR. Pd-tps-2 and Pd-lea-1 were significantly upregulated after cold acclimation, indicating an inducible expression in the cold adaptation of Panagrolaimus sp. DAW1. The role of trehalose synthesis genes in Panagrolaimus sp. DAW1 was further investigated by RNAi. Compared to the controls, Pd-tps-2a(RNAi)-treated and cold-acclimated nematodes showed a significant decrease in mRNA, but no change in trehalose content or freezing survival. The involvement of two other trehalose synthesis genes (tps-2b and gob-1) was also investigated. These findings provide the first functional genomic investigation of trehalose synthesis genes in the non-model organism Panagrolaimus sp. DAW1. The presence of several trehalose synthesis genes with different RNAi sensitivities suggests the existence of multiple backup systems in Panagrolaimus sp. DAW1, underlining the importance of this sugar in preparation for freezing.

8.
Cryobiology ; 75: 117-124, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28082102

RESUMEN

The Antarctic nematode, Panagrolaimus sp. DAW1 (formerly called Panagrolaimus davidi), is the best documented example of an organism able to survive intracellular ice formation in all of its compartments. Not only is it able to survive such extreme physiological disruption, but it is able to produce progeny once thawed from such a state. In addition, under slower rates, or less extreme degrees, of cooling, its body remains unfrozen and the vapour pressure difference between the supercooled body fluids and the surrounding ice leads to a process termed cryoprotective dehydration. In contrast to a fairly large body of work in building up our molecular understanding of cryoprotective dehydration, no comparable work has been undertaken on intracellular freezing. This paper describes an experiment subjecting cultures of Panagrolaimus sp. DAW1 to a range of temperatures including a rapid descent to -10 °C, in a medium just prior to, and after, freezing. Through deep sequencing of RNA libraries we have gained a snapshot of which genes are highly abundant when P. sp. DAW1 is undergoing an intracellular freezing event. The onset of freezing correlated with a high production of genes involved in cuticle formation and subsequently, after 24 h in a frozen state, protease production. In addition to the mapping of RNA sequencing, we have focused on a select set of genes arising both from the expression profiles, as well as implicated from other cold tolerance studies, to undertake qPCR. Among the most abundantly represented transcripts in the RNA mapping is the zinc-metalloenzyme, neprilysin, which also shows a particularly strong upregulated signal through qPCR once the nematodes have frozen.


Asunto(s)
Aclimatación/fisiología , Rabdítidos/fisiología , Animales , Regiones Antárticas , Frío , Deshidratación , Congelación
9.
Glob Chang Biol ; 23(1): 318-330, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27312151

RESUMEN

Understanding species' responses to environmental change underpins our abilities to make predictions on future biodiversity under any range of scenarios. In spite of the huge biodiversity in most ecosystems, a model species approach is often taken in environmental studies. To date, we still do not know how many species we need to study to input into models and inform on ecosystem-level responses to change. In this study, we tested current paradigms on factors setting thermal limits by investigating the acute warming response of six Antarctic marine invertebrates: a crustacean Paraceradocus miersi, a brachiopod Liothyrella uva, two bivalve molluscs, Laternula elliptica, Aequiyoldia eightsii, a gastropod mollusc Marseniopsis mollis and an echinoderm Cucumaria georgiana. Each species was warmed at the rate of 1 °C h-1 and taken to the same physiological end point (just prior to heat coma). Their molecular responses were evaluated using complementary metabolomics and transcriptomics approaches with the aim of discovering the underlying mechanisms of their resilience or sensitivity to warming. The responses were species-specific; only two showed accumulation of anaerobic end products and three exhibited the classical heat shock response with expression of HSP70 transcripts. These diverse cellular measures did not directly correlate with resilience to heat stress and suggested that each species may have a different critical point of failure. Thus, one unifying molecular mechanism underpinning response to warming could not be assigned, and no overarching paradigm was supported. This biodiversity in response makes future ecosystems predictions extremely challenging, as we clearly need to develop a macrophysiology-type approach to cellular evaluations of the environmental stress response, studying a range of well-rationalized members from different community levels and of different phylogenetic origins rather than extrapolating from one or two arbitrary model species.


Asunto(s)
Biodiversidad , Invertebrados , Animales , Regiones Antárticas , Organismos Acuáticos , Predicción , Filogenia , Temperatura
10.
PLoS One ; 11(11): e0166228, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832164

RESUMEN

The Antarctic nematode Panagrolaimus sp. DAW1 is one of the only organisms known to survive extensive intracellular freezing throughout its tissues. Although the physiological mechanisms of this extreme adaptation are partly understood, the molecular mechanisms remain largely unknown. RNAi is a method that allows the examination of gene function in a direct, targeted manner, by knocking out specific mRNAs and revealing the effects on the phenotype. In this study we have explored the viability of RNAi in Panagrolaimus sp. DAW1. In the first trial, nematodes were fed E. coli expressing Panagrolaimus sp. DAW1 dsRNA of the embryonic lethal genes rps-2 and dhc, and the blister gene duox. Pd-rps-2(RNAi)-treated nematodes showed a significant decrease in larval hatching. However, qPCR showed no significant decrease in the amount of rps-2 mRNA in Pd-rps-2(RNAi)-treated animals. Several soaking protocols for dsRNA uptake were investigated using the fluorescent dye FITC. Desiccation-enhanced soaking showed the strongest uptake of FITC and resulted in a significant and consistent decrease of mRNA levels of two of the four tested genes (rps-2 and tps-2a), suggesting effective uptake of dsRNA-containing solution by the nematode. These findings suggest that RNAi by desiccation-enhanced soaking is viable in Panagrolaimus sp. DAW1 and provide the first functional genomic approach to investigate freezing tolerance in this non-model organism. RNAi, in conjunction with qPCR, can be used to screen for candidate genes involved in intracellular freezing tolerance in Panagrolaimus sp. DAW1.


Asunto(s)
Escherichia coli/genética , Proteínas del Helminto/genética , Interferencia de ARN , ARN Bicatenario/genética , Rabdítidos/genética , Adaptación Fisiológica/genética , Animales , Regiones Antárticas , Escherichia coli/fisiología , Congelación , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Interacciones Huésped-Patógeno/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/microbiología , Microscopía Fluorescente , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdítidos/crecimiento & desarrollo , Rabdítidos/microbiología
11.
Microorganisms ; 4(1)2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681902

RESUMEN

Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

12.
BMC Res Notes ; 9(1): 418, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27562535

RESUMEN

BACKGROUND: Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. RESULTS: Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. CONCLUSIONS: Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be explored in future studies of non-model organisms.


Asunto(s)
Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple/genética , Probabilidad , Análisis de Secuencia de ADN/métodos , Transcriptoma/genética , Frecuencia de los Genes/genética , Humanos , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
13.
Mar Genomics ; 27: 47-55, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26777791

RESUMEN

Members of the Myidae family are ecologically and economically important, but there is currently very little molecular data on these species. The present study sequenced and assembled the mantle transcriptome of Mya truncata from the North West coast of Scotland and identified candidate biomineralisation genes. RNA-Seq reads were assembled to create 20,106 contigs in a de novo transciptome, 18.81% of which were assigned putative functions using BLAST sequence similarity searching (cuttoff E-value 1E-10). The most highly expressed genes were compared to the Antarctic clam (Laternula elliptica) and showed that many of the dominant biological functions (muscle contraction, energy production, biomineralisation) in the mantle were conserved. There were however, differences in the constitutive expression of heat shock proteins, which were possibly due to the M. truncata sampling location being at a relatively low latitude, and hence relatively warm, in terms of the global distribution of the species. Phylogenetic analyses of the Tyrosinase proteins from M. truncata showed a gene expansion which was absent in L. elliptica. The tissue distribution expression patterns of putative biomineralisation genes were investigated using quantitative PCR, all genes showed a mantle specific expression pattern supporting their hypothesised role in shell secretion. The present study provides some preliminary insights into how clams from different environments - temperate versus polar - build their shells. In addition, the transcriptome data provides a valuable resource for future comparative studies investigating biomineralisation.


Asunto(s)
Exoesqueleto/crecimiento & desarrollo , Mya/crecimiento & desarrollo , Mya/genética , Transcriptoma , Animales , Calcificación Fisiológica , Anotación de Secuencia Molecular , Mya/metabolismo , Análisis de Secuencia de ADN
14.
Ecol Evol ; 6(20): 7199-7206, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-28725392

RESUMEN

The connectedness of species in a trophic web has long been a key structural characteristic for both theoreticians and empiricists in their understanding of community stability. In the past decades, there has been a shift from focussing on determining the number of interactions to taking into account their relative strengths. The question is: How do the strengths of the interactions determine the stability of a community? Recently, a metric has been proposed which compares the stability of observed communities in terms of the strength of three- and two-link feedback loops (cycles of interaction strengths). However, it has also been suggested that we do not need to go beyond the pairwise structure of interactions to capture stability. Here, we directly compare the performance of the feedback and pairwise metrics. Using observed food-web structures, we show that the pairwise metric does not work as a comparator of stability and is many orders of magnitude away from the actual stability values. We argue that metrics based on pairwise-strength information cannot capture the complex organization of strong and weak links in a community, which is essential for system stability.

15.
BMC Genomics ; 16: 988, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26596422

RESUMEN

BACKGROUND: The capacity of marine species to survive chronic heat stress underpins their ability to survive warming oceans as a result of climate change. In this study RNA-Seq and 2-DE proteomics were employed to decipher the molecular response of the sub-tidal bivalve Pecten maximus, to elevated temperatures. RESULTS: Individuals were maintained at three different temperatures (15, 21 and 25 °C) for 56 days, representing control conditions, maximum environmental temperature and extreme warming, with individuals sampled at seven time points. The scallops thrived at 21 °C, but suffered a reduction in condition at 25 °C. RNA-Seq analyses produced 26,064 assembled contigs, of which 531 were differentially expressed, with putative annotation assigned to 177 transcripts. The proteomic approach identified 24 differentially expressed proteins, with nine identified by mass spectrometry. Network analysis of these results indicated a pivotal role for GAPDH and AP-1 signalling pathways. Data also suggested a remodelling of the cell structure, as revealed by the differential expression of genes involved in the cytoskeleton and cell membrane and a reduction in DNA repair. They also indicated the diversion of energetic metabolism towards the mobilization of lipid energy reserves to fuel the increased metabolic rate at the higher temperature. CONCLUSIONS: This work provides preliminary insights into the response of P. maximus to chronic heat stress and provides a basis for future studies examining the tipping points and energetic trade-offs of scallop culture in warming oceans.


Asunto(s)
Adaptación Fisiológica/genética , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/genética , Pecten/genética , Pecten/metabolismo , Proteómica , Animales , Pecten/fisiología
16.
Ecology ; 96(7): 2004-14, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26378322

RESUMEN

Selection acts on individuals, specifically on their differences. To understand adaptation and responses to change therefore requires knowledge of how variation is generated and distributed across traits. Variation occurs on different biological scales, from genetic through physiological to morphological, yet it is unclear which of these carries the most variability. For example, if individual variation is mainly generated by differences in gene expression, variability should decrease progressively from coding genes to morphological traits, whereas if post-translational and epigenetic effects increase variation, the opposite should occur. To test these predictions, we compared levels of variation among individuals in various measures of gene expression, physiology (including activity), and morphology in two abundant and geographically widespread Antarctic molluscs, the clam Laternula elliptica and the limpet Nacella concinna. Direct comparisons among traits as diverse as heat shock protein QPCR assays, whole transcription profiles, respiration rates, burying rate, shell length, and ash-free dry mass were made possible through the novel application of an established metric, the Wentworth Scale. In principle, this approach could be extended to analyses of populations, communities, or even entire ecosystems. We found consistently greater variation in gene expression than morphology, with physiological measures falling in between. This suggests that variability is generated at the gene expression level. These findings have important implications for refining current biological models and predictions of how biodiversity may respond to climate change.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Moluscos/genética , Moluscos/fisiología , Animales , Regiones Antárticas , Cambio Climático , Ecosistema
17.
Aquat Toxicol ; 166: 10-20, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26186662

RESUMEN

The Brazilian oyster Crassostrea brasiliana was challenged to three common environmental contaminants: phenanthrene, diesel fuel water-accommodated fraction (WAF) and domestic sewage. Total RNA was extracted from the gill and digestive gland, and cDNA libraries were sequenced using the 454 FLX platform. The assembled transcriptome resulted in ̃20,000 contigs, which were annotated to produce the first de novo transcriptome for C. brasiliana. Sequences were screened to identify genes potentially involved in the biotransformation of xenobiotics and associated antioxidant defence mechanisms. These gene families included those of the cytochrome P450 (CYP450), 70kDa heat shock, antioxidants, such as glutathione S-transferase, superoxide dismutase, catalase and also multi-drug resistance proteins. Analysis showed that the massive expansion of the CYP450 and HSP70 family due to gene duplication identified in the Crassostrea gigas genome also occurred in C. brasiliana, suggesting these processes form the base of the Crassostrea lineage. Preliminary expression analyses revealed several candidates biomarker genes that were up-regulated during each of the three treatments, suggesting the potential for environmental monitoring.


Asunto(s)
Crassostrea/efectos de los fármacos , Crassostrea/metabolismo , Transcriptoma , Contaminantes Químicos del Agua/toxicidad , Animales , Biotransformación/genética , Brasil , Crassostrea/genética , Monitoreo del Ambiente , Gasolina/toxicidad , Branquias/metabolismo , Redes y Vías Metabólicas/genética , Fenantrenos/metabolismo , Fenantrenos/toxicidad , Aguas del Alcantarillado , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Xenobióticos/metabolismo , Xenobióticos/toxicidad
18.
Mar Genomics ; 24 Pt 3: 231-2, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26102557

RESUMEN

454 RNA-Seq transcriptome data were generated from foot tissue of the Antarctic brooding gastropod mollusc Margarella antarctica. A total of 6195 contigs were assembled de novo, providing a useful resource for researchers with an interest in Antarctic marine species, phylogenetics and mollusc biology, especially shell production.


Asunto(s)
Gastrópodos/genética , Gastrópodos/fisiología , Transcriptoma , Animales , Regiones Antárticas , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico
19.
Mar Genomics ; 20: 45-55, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25677071

RESUMEN

Mollusc shell is built-up by secretion from the mantle and is the result of a controlled biological process termed biomineralisation. In general mollusc shells are well characterised however, the molecular mechanisms used by molluscs to produce shell remain largely unknown. One tractable method to study molecular biomineralisation mechanisms are shell damage-repair experiments, which stimulate calcification pathways. The present study used the Antarctic clam (Laternula elliptica) as a model to better understand when and where molecular biomineralisation events occur in the mantle. Two approaches were used: one experiment used high-throughput RNA-sequencing to study molecular damage-repair responses over a 2 month time series, and a second experiment used targeted semi-quantitative PCR to investigate the spatial location of molecular mechanisms in response to damage. Shell repair in L. elliptica was slow, lasting at least 2 months, and expression results revealed different biological processes were important at varying time scales during repair. A spatial pattern in relation to a single drilled hole was revealed for some, but not all, candidate genes suggesting the mantle may be functionally zoned and can respond to damage both locally and ubiquitously across the mantle. Valuable data on the temporal and spatial response of shell damage-repair provide a baseline not only for future studies in L. elliptica, but also other molluscs.


Asunto(s)
Bivalvos/metabolismo , Regulación de la Expresión Génica/fisiología , Transcriptoma , Animales , Factores de Tiempo
20.
J Anim Ecol ; 84(3): 773-784, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25491898

RESUMEN

This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions.


Asunto(s)
Erizos de Mar/fisiología , Temperatura , Aclimatación , Animales , Regiones Antárticas , Cambio Climático , Concentración de Iones de Hidrógeno , Larva/fisiología , Consumo de Oxígeno , Reproducción , Erizos de Mar/crecimiento & desarrollo , Agua de Mar/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...