Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 6(1): 214, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789142

RESUMEN

Metal-Organic frameworks (MOFs) have been considered for various gas storage and separation applications. Theoretically, there are an infinite number of MOFs that can be created; however, a finite amount of resources are available to evaluate each one. Computational methods can be adapted to expedite the process of evaluation. In the context of CO2 capture, this paper investigates the method of screening MOFs using machine learning trained on molecular simulation data. New descriptors are introduced to aid this process. Using all descriptors, it is shown that machine learning can predict the CO2 adsorption, with an R2 of above 0.9. The introduced Effective Point Charge (EPoCh) descriptors, which assign values to frameworks' partial charges based on the expected CO2 uptake of an equivalent point charge in isolation, are shown to be the second most important group of descriptors, behind the Henry coefficient. Furthermore, the EPoCh descriptors are hundreds of thousands of times faster to obtain compared with the Henry coefficient, and they achieve similar results when identifying top candidates for CO2 capture using pseudo-classification predictions.

2.
Nat Commun ; 14(1): 286, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653373

RESUMEN

Controllable fabrication of angstrom-size channels has been long desired to mimic biological ion channels for the fundamental study of ion transport. Here we report a strategy for fabricating angstrom-scale ion channels with one-dimensional (1D) to three-dimensional (3D) pore structures by the growth of metal-organic frameworks (MOFs) into nanochannels. The 1D MIL-53 channels of flexible pore sizes around 5.2 × 8.9 Å can transport cations rapidly, with one to two orders of magnitude higher conductivities and mobilities than MOF channels of hybrid pore configurations and sizes, including Al-TCPP with 1D ~8 Å channels connected by 2D ~6 Å interlayers, and 3D UiO-66 channels of ~6 Å windows and 9 - 12 Å cavities. Furthermore, the 3D MOF channels exhibit better ion sieving properties than those of 1D and 2D MOF channels. Theoretical simulations reveal that ion transport through 2D and 3D MOF channels should undergo multiple dehydration-rehydration processes, resulting in higher energy barriers than pure 1D channels. These findings offer a platform for studying ion transport properties at angstrom-scale confinement and provide guidelines for improving the efficiency of ionic separations and nanofluidics.

3.
Med Gas Res ; 13(1): 33-38, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35946221

RESUMEN

In a previous study, in silico screening of the binding of almost all proteins in the Protein Data Bank to each of the five noble gases xenon, krypton, argon, neon, and helium was reported. This massive and rich data set requires analysis to identify the gas-protein interactions that have the best binding strengths, those where the binding of the noble gas occurs at a site that can modulate the function of the protein, and where this modulation might generate clinically relevant effects. Here, we report a preliminary analysis of this data set using a rational, heuristic score based on binding strength and location. We report a partial prioritized list of xenon protein targets and describe how these data can be analyzed, using arginase and carbonic anhydrase as examples. Our aim is to make the scientific community aware of this massive, rich data set and how it can be analyzed to accelerate future discoveries of xenon-induced biological activity and, ultimately, the development of new "atomic" drugs.


Asunto(s)
Proteoma , Xenón , Criptón/química , Criptón/farmacología , Neón/farmacología , Gases Nobles/química , Gases Nobles/metabolismo , Xenón/química , Xenón/farmacología
4.
Sci Adv ; 8(51): eabq2202, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542701

RESUMEN

The consequences of crowding on the dynamic conformational ensembles of intrinsically disordered proteins (IDPs) remain unresolved because of their ultrafast motion. Here, we report crowder-induced interactions and conformational dynamics of a prototypical multistimuli-responsive IDP, Rec1-resilin. The effects of a range of crowders of varying sizes, forms, topologies, and concentrations were examined using spectroscopic, spectrofluorimetric, and contrast-matching small- and ultrasmall-angle neutron scattering investigation. To achieve sufficient neutron contrast against the crowders, deuterium-labeled Rec1-resilin was biosynthesized successfully. Moreover, the ab initio "shape reconstruction" approach was used to obtain three-dimensional models of the conformational assemblies. The IDP revealed crowder-specific systematic extension and compaction with the level of macromolecular crowding. Last, a robust extension-contraction model has been postulated to capture the fundamental phenomena governing the observed behavior of IDPs. The study provides insights and fresh perspectives for understanding the interactions and structural dynamics of IDPs in crowded states.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica , Sustancias Macromoleculares
5.
ACS Nano ; 15(3): 4321-4334, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33619964

RESUMEN

Bone is a hierarchical material primarily composed of collagen, water, and mineral that is organized into discrete molecular, nano-, micro-, and macroscale structural components. In contrast to the structural knowledge of the collagen and mineral domains, the nanoscale porosity of bone is poorly understood. In this study, we introduce a well-established pore characterization technique, positron annihilation lifetime spectroscopy (PALS), to probe the nanoscale size and distribution of each component domain by analyzing pore sizes inherent to hydrated bone together with pores generated by successive removal of water and then organic matrix (including collagen and noncollagenous proteins) from samples of cortical bovine femur. Combining the PALS results with simulated pore size distribution (PSD) results from collagen molecule and microfibril structure, we identify pores with diameter of 0.6 nm that suggest porosity within the collagen molecule regardless of the presence of mineral and water. We find that water occupies three larger domain size regions with nominal mean diameters of 1.1, 1.9, and 4.0 nm-spaces that are hypothesized to associate with intercollagen molecular spaces, terminal segments (d-spacing) within collagen microfibrils, and interface spacing between collagen and mineral structure, respectively. Subsequent removal of the organic matrix determines a structural pore size of 5-6 nm for deproteinized bone-suggesting the average spacing between mineral lamella. An independent method to deduce the average mineral spacing from specific surface area (SSA) measurements of the deproteinized sample is presented and compared with the PALS results. Together, the combined PALS and SSA results set a range on the mean mineral lamella thickness of 4-8 nm.


Asunto(s)
Huesos , Electrones , Animales , Huesos/diagnóstico por imagen , Bovinos , Colágeno , Porosidad , Análisis Espectral
6.
Nat Mater ; 19(7): 767-774, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32152561

RESUMEN

Biological ion channels have remarkable ion selectivity, permeability and rectification properties, but it is challenging to develop artificial analogues. Here, we report a metal-organic framework-based subnanochannel (MOFSNC) with heterogeneous structure and surface chemistry to achieve these properties. The asymmetrically structured MOFSNC can rapidly conduct K+, Na+ and Li+ in the subnanometre-to-nanometre channel direction, with conductivities up to three orders of magnitude higher than those of Ca2+ and Mg2+, equivalent to a mono/divalent ion selectivity of 103. Moreover, by varying the pH from 3 to 8 the ion selectivity can be tuned further by a factor of 102 to 104. Theoretical simulations indicate that ion-carboxyl interactions substantially reduce the energy barrier for monovalent cations to pass through the MOFSNC, and thus lead to ultrahigh ion selectivity. These findings suggest ways to develop ion selective devices for efficient ion separation, energy reservation and power generation.


Asunto(s)
Estructuras Metalorgánicas , Metales/química , Nanoestructuras/química , Cationes Monovalentes , Conductividad Eléctrica , Humanos
7.
Nat Commun ; 10(1): 2490, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186413

RESUMEN

Biological fluoride ion channels are sub-1-nanometer protein pores with ultrahigh F- conductivity and selectivity over other halogen ions. Developing synthetic F- channels with biological-level selectivity is highly desirable for ion separations such as water defluoridation, but it remains a great challenge. Here we report synthetic F- channels fabricated from zirconium-based metal-organic frameworks (MOFs), UiO-66-X (X = H, NH2, and N+(CH3)3). These MOFs are comprised of nanometer-sized cavities connected by sub-1-nanometer-sized windows and have specific F- binding sites along the channels, sharing some features of biological F- channels. UiO-66-X channels consistently show ultrahigh F- conductivity up to ~10 S m-1, and ultrahigh F-/Cl- selectivity, from ~13 to ~240. Molecular dynamics simulations reveal that the ultrahigh F- conductivity and selectivity can be ascribed mainly to the high F- concentration in the UiO-66 channels, arising from specific interactions between F- ions and F- binding sites in the MOF channels.


Asunto(s)
Fluoruros/química , Estructuras Metalorgánicas , Compuestos Orgánicos/química , Nanoestructuras , Circonio/química
8.
Chemistry ; 25(36): 8489-8493, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31056779

RESUMEN

A chiral, octahedral M12 L12 cage, which is charge neutral and contains an internal void of about 2000 Å3 , is reported. The cage was synthesised as an enantiopure complex by virtue of amino-acid-based dicarboxylate ligands, which assemble around copper paddlewheels at the vertices of the octahedron. The cage persists in solution with retention of the fluorescence properties of the parent acid. The solid-state structure contains large pores both within and between the cages, and displays permanent porosity for the sorption of gases with retention of crystallinity. Initial tests show some enantioselectivity of the cage towards guests in solution.

9.
Chem Sci ; 10(12): 3592-3601, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30996951

RESUMEN

Recent demonstrations of melting in the metal-organic framework (MOF) family have created interest in the interfacial domain between inorganic glasses and amorphous organic polymers. The chemical and physical behaviour of porous hybrid liquids and glasses is of particular interest, though opportunities are limited by the inaccessible melting temperatures of many MOFs. Here, we show that the processing technique of flux melting, 'borrowed' from the inorganic domain, may be applied in order to melt ZIF-8, a material which does not possess an accessible liquid state in the pure form. Effectively, we employ the high-temperature liquid state of one MOF as a solvent for a secondary, non-melting MOF component. Differential scanning calorimetry, small- and wide-angle X-ray scattering, electron microscopy and X-ray total scattering techniques are used to show the flux melting of the crystalline component within the liquid. Gas adsorption and positron annihilation lifetime spectroscopy measurements show that this results in enhanced, accessible porosity to a range of guest molecules in the resultant flux melted MOF glass.

10.
Nat Commun ; 9(1): 5042, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487589

RESUMEN

To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability.

11.
ACS Appl Mater Interfaces ; 10(47): 40938-40950, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30372015

RESUMEN

The ability to align porous metal-organic frameworks (MOFs) on substrate surfaces on a macroscopic scale is a vital step toward integrating MOFs into functional devices. But macroscale surface alignment of MOF crystals has only been demonstrated in a few cases. To accelerate the materials discovery process, we have developed a high-throughput computational screening algorithm to identify MOFs that are likely to undergo macroscale aligned heterepitaxial growth on a substrate. Screening of thousands of MOF structures by this process can be achieved in a few days on a desktop workstation. The algorithm filters MOFs based on surface chemical compatibility, lattice matching with the substrate, and interfacial bonding. Our method uses a simple new computationally efficient measure of the interfacial energy that considers both bond and defect formation at the interface. Furthermore, we show that this novel descriptor is a better predictor of aligned heteroepitaxial growth than other established interface descriptors, by testing our screening algorithm on a sample set of copper MOFs that have been grown heteroepitaxially on a copper hydroxide surface. Application of the screening process to several MOF databases reveals that the top candidates for aligned growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry in the plane of the substrate. This result indicates a substrate-directing effect that could be exploited in targeted synthetic strategies. We also identify that MOFs likely to form aligned heterostructures have broad distributions of in-plane pore sizes and anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range of properties may be experimentally accessible.

12.
ChemMedChem ; 13(18): 1931-1938, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30003691

RESUMEN

The chemically inert noble gases display a surprisingly rich spectrum of useful biological properties. Relatively little is known about the molecular mechanisms behind these effects. It is clearly not feasible to conduct large numbers of pharmacological experiments on noble gases to identify activity. Computational studies of the binding of noble gases and proteins can address this paucity of information and provide insight into mechanisms of action. We used bespoke computational grid calculations to predict the positions of energy minima in the interactions of noble gases with diverse proteins. The method was validated by quantifying how well simulations could predict binding positions in 131 diverse protein X-ray structures containing 399 Xe and Kr atoms. We found excellent agreement between calculated and experimental binding positions of noble gases. 94 % of all crystallographic xenon atoms were within 1 Xe van der Waals (vdW) diameter of a predicted binding site, and 97 % lay within 2 vdW diameters. 100 % of crystallographic krypton atoms were within 1 Kr vdW diameter of a predicted binding site. We showed the feasibility of large-scale computational screening of all ≈60 000 unique structures in the Protein Data Bank. This will elucidate biochemical mechanisms by which these novel 'atomic drugs' elicit their valuable biochemical properties and identify new medical uses.


Asunto(s)
Criptón/química , Proteínas/química , Xenón/química , Sitios de Unión , Modelos Moleculares , Relación Estructura-Actividad
13.
Sci Adv ; 4(3): eaao6827, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29536040

RESUMEN

Glass-forming ability (GFA) is the ability of a liquid to avoid crystallization during cooling. Metal-organic frameworks (MOFs) are a new class of glass formers (1-3), with hitherto unknown dynamic and thermodynamic properties. We report the discovery of a new series of tetrahedral glass systems, zeolitic imidazolate framework-62 (ZIF-62) [Zn(Im2-x bIm x )], which have ultrahigh GFA, superior to any other known glass formers. This ultrahigh GFA is evidenced by a high viscosity η (105 Pa·s) at the melting temperature Tm, a large crystal-glass network density deficit (Δρ/ρg)network, no crystallization in supercooled region on laboratory time scales, a low fragility (m = 23), an extremely high Poisson's ratio (ν = 0.45), and the highest Tg/Tm ratio (0.84) ever reported. Tm and Tg both increase with benzimidazolate (bIm) content but retain the same ultrahigh Tg/Tm ratio, owing to high steric hindrance and frustrated network dynamics and also to the unusually low enthalpy and entropy typical of the soft and flexible nature of MOFs. On the basis of these versatile properties, we explain the exceptional GFA of the ZIF-62 system.

14.
Chem Soc Rev ; 46(11): 3453-3480, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28530737

RESUMEN

The potential commercial applications for metal organic frameworks (MOFs) are tantalizing. To address the opportunity, many novel approaches for their synthesis have been developed recently. These strategies present a critical step towards harnessing the myriad of potential applications of MOFs by enabling larger scale production and hence real-world applications. This review provides an up-to-date survey ( references) of the most promising novel synthetic routes, i.e., electrochemical, microwave, mechanochemical, spray drying and flow chemistry synthesis. Additionally, the essential topic of downstream processes, especially for large scale synthesis, is critically reviewed. Lastly we present the current state of MOF commercialization with direct feedback from commercial players.

15.
Chem Mater ; 29(7): 2844-2854, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28413259

RESUMEN

The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Šand void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Šand void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as "cryo-adsorbents", with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar.

16.
Nat Mater ; 16(3): 342-348, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27918565

RESUMEN

The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.


Asunto(s)
Estructuras Metalorgánicas/química , Anisotropía , Compuestos Inorgánicos/química , Modelos Moleculares , Conformación Molecular , Nanotubos/química , Porosidad
17.
Nature ; 532(7600): 480-3, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27121841

RESUMEN

The regulation of water content in polymeric membranes is important in a number of applications, such as reverse electrodialysis and proton-exchange fuel-cell membranes. External thermal and water management systems add both mass and size to systems, and so intrinsic mechanisms of retaining water and maintaining ionic transport in such membranes are particularly important for applications where small system size is important. For example, in proton-exchange membrane fuel cells, where water retention in the membrane is crucial for efficient transport of hydrated ions, by operating the cells at higher temperatures without external humidification, the membrane is self-humidified with water generated by electrochemical reactions. Here we report an alternative solution that does not rely on external regulation of water supply or high temperatures. Water content in hydrocarbon polymer membranes is regulated through nanometre-scale cracks ('nanocracks') in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance.


Asunto(s)
Membranas Artificiales , Nanotecnología , Polímeros/química , Agua/análisis , Materiales Biomiméticos/química , Biomimética , Cactaceae/metabolismo , Desecación , Diálisis , Electroquímica , Humedad , Interacciones Hidrofóbicas e Hidrofílicas , Estomas de Plantas/metabolismo , Protones , Propiedades de Superficie , Temperatura
18.
ChemSusChem ; 8(17): 2789-825, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26033917

RESUMEN

One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed.


Asunto(s)
Fuentes Generadoras de Energía , Modelos Teóricos , Termodinámica
19.
Nat Commun ; 6: 7529, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26104672

RESUMEN

Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.

20.
Angew Chem Int Ed Engl ; 54(9): 2669-73, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25586722

RESUMEN

Porosity loss, also known as physical aging, in glassy polymers hampers their long term use in gas separations. Unprecedented interactions of porous aromatic frameworks (PAFs) with these polymers offer the potential to control and exploit physical aging for drastically enhanced separation efficiency. PAF-1 is used in the archetypal polymer of intrinsic microporosity (PIM), PIM-1, to achieve three significant outcomes. 1) hydrogen permeability is drastically enhanced by 375% to 5500 Barrer. 2) Physical aging is controlled causing the selectivity for H2 over N2 to increase from 4.5 to 13 over 400 days of aging. 3) The improvement with age of the membrane is exploited to recover up to 98% of H2 from gas mixtures with N2 . This process is critical for the use of ammonia as a H2 storage medium. The tethering of polymer side chains within PAF-1 pores is responsible for maintaining H2 transport pathways, whilst the larger N2 pathways gradually collapse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...