Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 10(9): 230520, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37771962

RESUMEN

Understanding the vertical migration behaviour of Antarctic krill is important for understanding spatial distribution, ecophysiology, trophic interactions and carbon fluxes of this Southern Ocean key species. In this study, we analysed an eight-month continuous dataset recorded with an ES80 echosounder on board a commercial krill fishing vessel in the southwest Atlantic sector of the Southern Ocean. Our analysis supports the existing hypothesis that krill swarms migrate into deeper waters during winter but also reveals a high degree of variability in vertical migration behaviour within seasons, even at small spatial scales. During summer, we found that behaviour associated with prolonged surface presence primarily occurred at low surface chlorophyll a concentrations whereas multiple ascent-descent cycles per day occurred when surface chlorophyll a concentrations were elevated. The high plasticity, with some krill swarms behaving differently in the same location at the same time, suggests that krill behaviour is not a purely environmentally driven process. Differences in life stage, physiology and type of predator are likely other important drivers. Finally, our study demonstrates new ways of using data from krill fishing vessels, and with the routine collection of additional information in potential future projects, they have great potential to significantly advance our understanding of krill ecology.

2.
PLoS One ; 18(7): e0286036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37506064

RESUMEN

Antarctic krill (Euphausia superba) is a key species of the Southern Ocean, impacted by climate change and human exploitation. Understanding how these changes affect the distribution and abundance of krill is crucial for generating projections of change for Southern Ocean ecosystems. Krill growth is an important indicator of habitat suitability and a series of models have been developed and used to examine krill growth potential at different spatial and temporal scales. The available models have been developed using a range of empirical and mechanistic approaches, providing alternative perspectives and comparative analyses of the key processes influencing krill growth. Here we undertake an intercomparison of a suite of the available models to understand their sensitivities to major driving variables. This illustrates that the results are strongly determined by the model structure and technical characteristics, and the data on which they were developed and validated. Our results emphasize the importance of assessing the constraints and requirements of individual krill growth models to ensure their appropriate application. The study also demonstrates the value of the development of alternative modelling approaches to identify key processes affecting the dynamics of krill. Of critical importance for modelling the growth of krill is appropriately assessing and accounting for differences in estimates of food availability resulting from alternative methods of observation. We suggest that an intercomparison approach is particularly valuable in the development and application of models for the assessment of krill growth potential at circumpolar scales and for future projections. As another result of the intercomparison, the implementations of the models used in this study are now publicly available for future use and analyses.


Asunto(s)
Ecosistema , Euphausiacea , Animales , Humanos , Cambio Climático , Alimentos Marinos , Regiones Antárticas
3.
Sci Rep ; 10(1): 19262, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159130

RESUMEN

Increasing influence of Atlantic water in the Arctic Ocean has the potential to significantly impact regional water temperature and salinity. Here we use a rDNA barcoding approach to reveal how microbial communities are partitioned into distinct assemblages across a gradient of Atlantic-Polar Water influence in the Norwegian Sea. Data suggest that temperate adapted bacteria may replace cold water taxa under a future scenario of increasing Atlantic influence, but the eukaryote response is more complex. Some abundant eukaryotic cold water taxa could persist, while less abundant eukaryotic taxa may be replaced by warmer adapted temperate species. Furthermore, within lineages, different taxa display evidence of increased relative abundance in reaction to favourable conditions and we observed that rare microbial taxa are sample site rather than region specific. Our findings have significant implications for the vulnerability of polar associated community assemblages, which may change, impacting the ecosystem services they provide, under predicted increases of Atlantic mixing and warming within the Arctic region.


Asunto(s)
Ecosistema , Microbiota , Agua de Mar/microbiología , Microbiología del Agua , Regiones Árticas , Océano Atlántico
4.
Environ Int ; 136: 105460, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31935563

RESUMEN

We report on three decades of repeat surveys of beached marine debris at two locations in the Scotia Sea, in the Southwest Atlantic sector of the Southern Ocean. Between October 1989 and March 2019 10,112 items of beached debris were recovered from Main Bay, Bird Island, South Georgia in the northern Scotia Sea. The total mass of items (data from 1996 onwards) was 101 kg. Plastic was the most commonly recovered item (97.5% by number; 89% by mass) with the remainder made up of fabric, glass, metal, paper and rubber. Mean mass per item was 0.01 kg and the rate of accumulation was 100 items km-1 month-1. Analyses showed an increase in the number of debris items recovered (5.7 per year) but a decline in mean mass per item, suggesting a trend towards more, smaller items of debris at Bird Island. At Signy Island, South Orkney Islands, located in the southern Scotia Sea and within the Antarctic Treaty area, debris items were collected from three beaches, during the austral summer only, between 1991 and 2019. In total 1304 items with a mass of 268 kg were recovered. Plastic items contributed 84% by number and 80% by mass, with the remainder made up of metal (6% by number; 14% by mass), rubber (4% by number; 3% by mass), fabric, glass and paper (<1% by number; 3% by mass). Mean mass per item was 0.2 kg and rate of accumulation was 3 items km-1 month-1. Accumulation rates were an order of magnitude higher on the western (windward) side of the island (13-17 items km-1 month-1) than the eastern side (1.5 items km-1 month-1). Analyses showed a slight decline in number and slight increase in mean mass of debris items over time at Signy Island. This study highlights the prevalence of anthropogenic marine debris (particularly plastic) in the Southern Ocean. It shows the importance of long-term monitoring efforts in attempting to catalogue marine debris and identify trends, and serves warning of the urgent need for a wider understanding of the extent of marine debris across the whole of the Southern Ocean.


Asunto(s)
Monitoreo del Ambiente , Residuos , Contaminantes del Agua , Animales , Regiones Antárticas , Islas , Océanos y Mares , Plásticos , Residuos Sólidos , Encuestas y Cuestionarios
5.
Front Microbiol ; 9: 1474, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065704

RESUMEN

Microbes occupy diverse ecological niches and only through recent advances in next generation sequencing technologies have the true microbial diversity been revealed. Furthermore, lack of perceivable marine barriers to genetic dispersal (i.e., mountains or islands) has allowed the speculation that organisms that can be easily transported by currents and therefore proliferate everywhere. That said, ocean currents are now commonly being recognized as barriers for microbial dispersal. Here we analyzed samples collected from a total of six stations, four located in the Indian Ocean, and two in the Southern Ocean. Amplicon sequencing was used to characterize both prokaryotic and eukaryotic plankton communities, while shotgun sequencing was used for the combined environmental DNA (eDNA), microbial eDNA (meDNA), and viral fractions. We found that Cyanobacteria dominated the prokaryotic component in the South-West Indian Ocean, while γ-Proteobacteria dominated the South-East Indian Ocean. A combination of γ- and α-Proteobacteria dominated the Southern Ocean. Alveolates dominated almost exclusively the eukaryotic component, with variation in the ratio of Protoalveolata and Dinoflagellata depending on station. However, an increase in haptophyte relative abundance was observed in the Southern Ocean. Similarly, the viral fraction was dominated by members of the order Caudovirales across all stations; however, a higher presence of nucleocytoplasmic large DNA viruses (mainly chloroviruses and mimiviruses) was observed in the Southern Ocean. To our knowledge, this is the first that a statistical difference in the microbiome (from viruses to protists) between the subtropical Indian and Southern Oceans. We also show that not all phylotypes can be found everywhere, and that meDNA is not a suitable resource for monitoring aquatic microbial diversity.

6.
Glob Chang Biol ; 24(1): 132-142, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28850764

RESUMEN

The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It further demonstrates that this community is thermally resilient to present levels of sea surface warming.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Océanos y Mares , Zooplancton , Animales , Biomasa , Copépodos , Temperatura
7.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29237854

RESUMEN

Antarctic krill form some of the highest concentrations of animal biomass observed in the world's oceans potentially due to their prolific ability to swarm. Determining the movement of Antarctic krill within swarms is important to identify drivers of their behaviour and their biogeochemical impact on their environment. We examined vertical velocity within approximately 2000 krill swarms through the combined use of a shipborne echosounder and an acoustic Doppler current profiler. We revealed a pronounced downward anomaly in vertical velocity within swarms of -0.6 cm s-1 compared with vertical motion outside the swarm. The anomaly changed over the diel cycle, with smaller downward anomalies occurring at night. Swarms in regions of high phytoplankton concentrations (a proxy for food availability) also exhibited significantly smaller downward anomalies. We propose that the anomaly is the result of downward velocities generated by the action of krill beating their swimming appendages. During the night and in high phytoplankton availability, when krill are more likely to feed to the point of satiation, swimming activity is lowered and the anomaly is reduced. Our findings are consistent with laboratory work where krill ceased swimming and adopted a parachute posture when sated. Satiation sinking behaviour can substantially increase the efficiency of carbon transport to depth through depositing faecal pellets at the bottom of swarms, avoiding the reingestion and break-up of pellets by other swarm members.


Asunto(s)
Distribución Animal , Euphausiacea/fisiología , Saciedad , Animales , Conducta Alimentaria , Océanos y Mares
8.
Nat Ecol Evol ; 1(12): 1853-1861, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29133903

RESUMEN

A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.


Asunto(s)
Ecosistema , Euphausiacea/fisiología , Cubierta de Hielo , Distribución Animal , Animales , Regiones Antárticas , Océano Atlántico , Euphausiacea/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Estaciones del Año
9.
Sci Rep ; 7(1): 6963, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761090

RESUMEN

Food webs in high-latitude oceans are dominated by relatively few species. Future ocean and sea-ice changes affecting the distribution of such species will impact the structure and functioning of whole ecosystems. Antarctic krill (Euphausia superba) is a key species in Southern Ocean food webs, but there is little understanding of the factors influencing its success throughout much of the ocean. The capacity of a habitat to maintain growth will be crucial and here we use an empirical relationship of growth rate to assess seasonal spatial variability. Over much of the ocean, potential for growth is limited, with three restricted oceanic regions where seasonal conditions permit high growth rates, and only a few areas around the Scotia Sea and Antarctic Peninsula suitable for growth of the largest krill (>60 mm). Our study demonstrates that projections of impacts of future change need to account for spatial and seasonal variability of key ecological processes within ocean ecosystems.

10.
Sci Total Environ ; 598: 220-227, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28441600

RESUMEN

It was thought that the Southern Ocean was relatively free of microplastic contamination; however, recent studies and citizen science projects in the Southern Ocean have reported microplastics in deep-sea sediments and surface waters. Here we reviewed available information on microplastics (including macroplastics as a source of microplastics) in the Southern Ocean. We estimated primary microplastic concentrations from personal care products and laundry, and identified potential sources and routes of transmission into the region. Estimates showed the levels of microplastic pollution released into the region from ships and scientific research stations were likely to be negligible at the scale of the Southern Ocean, but may be significant on a local scale. This was demonstrated by the detection of the first microplastics in shallow benthic sediments close to a number of research stations on King George Island. Furthermore, our predictions of primary microplastic concentrations from local sources were five orders of magnitude lower than levels reported in published sampling surveys (assuming an even dispersal at the ocean surface). Sea surface transfer from lower latitudes may contribute, at an as yet unknown level, to Southern Ocean plastic concentrations. Acknowledging the lack of data describing microplastic origins, concentrations, distribution and impacts in the Southern Ocean, we highlight the urgent need for research, and call for routine, standardised monitoring in the Antarctic marine system.

11.
Proc Biol Sci ; 274(1629): 3057-67, 2007 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17939986

RESUMEN

Determining how climate fluctuations affect ocean ecosystems requires an understanding of how biological and physical processes interact across a wide range of scales. Here we examine the role of physical and biological processes in generating fluctuations in the ecosystem around South Georgia in the South Atlantic sector of the Southern Ocean. Anomalies in sea surface temperature (SST) in the South Pacific sector of the Southern Ocean have previously been shown to be generated through atmospheric teleconnections with El Niño Southern Oscillation (ENSO)-related processes. These SST anomalies are propagated via the Antarctic Circumpolar Current into the South Atlantic (on time scales of more than 1 year), where ENSO and Southern Annular Mode-related atmospheric processes have a direct influence on short (less than six months) time scales. We find that across the South Atlantic sector, these changes in SST, and related fluctuations in winter sea ice extent, affect the recruitment and dispersal of Antarctic krill. This oceanographically driven variation in krill population dynamics and abundance in turn affects the breeding success of seabird and marine mammal predators that depend on krill as food. Such propagating anomalies, mediated through physical and trophic interactions, are likely to be an important component of variation in ocean ecosystems and affect responses to longer term change. Population models derived on the basis of these oceanic fluctuations indicate that plausible rates of regional warming of 1oC over the next 100 years could lead to more than a 95% reduction in the biomass and abundance of krill across the Scotia Sea by the end of the century.


Asunto(s)
Clima , Ecosistema , Animales , Regiones Antárticas , Euphausiacea/fisiología , Lobos Marinos/fisiología , Océanos y Mares , Dinámica Poblacional , Conducta Predatoria/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...