Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 27(15): 2435-49, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27280386

RESUMEN

The Vps13 protein family is highly conserved in eukaryotic cells. Mutations in human VPS13 genes result in a variety of diseases, such as chorea acanthocytosis (ChAc), but the cellular functions of Vps13 proteins are not well defined. In yeast, there is a single VPS13 orthologue, which is required for at least two different processes: protein sorting to the vacuole and sporulation. This study demonstrates that VPS13 is also important for mitochondrial integrity. In addition to preventing transfer of DNA from the mitochondrion to the nucleus, VPS13 suppresses mitophagy and functions in parallel with the endoplasmic reticulum-mitochondrion encounter structure (ERMES). In different growth conditions, Vps13 localizes to endosome-mitochondrion contacts and to the nuclear-vacuole junctions, indicating that Vps13 may function at membrane contact sites. The ability of VPS13 to compensate for the absence of ERMES correlates with its intracellular distribution. We propose that Vps13 is present at multiple membrane contact sites and that separation-of-function mutants are due to loss of Vps13 at specific junctions. Introduction of VPS13A mutations identified in ChAc patients at cognate sites in yeast VPS13 are specifically defective in compensating for the lack of ERMES, suggesting that mitochondrial dysfunction might be the basis for ChAc.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología , Mutación , Neuroacantocitosis , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Curr Genet ; 50(3): 173-82, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16850347

RESUMEN

A large number of gene products have been identified that either directly or indirectly alter the inheritance of mitochondrial DNA. In yeast, we have used a unique genetic screen based on the transfer of DNA from mitochondria to nucleus to identify nuclear-encoded gene products that are targeted to mitochondria and impact the stable inheritance of mitochondrial DNA. A specific allele of one of these genes, yme2-4, prevents even the low wild-type rate of mitochondrial DNA transfer to the nucleus and imparts significant temperature-sensitive and respiratory-growth defects. Intra- and extragenic suppressors of the yme2-4 growth phenotypes were isolated and analysis of these interacting genes reveals that both YME2 and its suppressors influence the structure and number of mitochondrial nucleoids. The yme2-4 allele decreases the average number of mtDNA nucleoids found in cells and the sensitivity of DNA in toluene-treated mitochondria to digestion by DNA exonuclease, effects reversed by intra- and extragenic suppressors. The extragenic suppressor, a missense allele of ILV5, encodes an enzyme of the branched-chain amino acid biosynthetic pathway that is also a component of mitochondrial nucleoids. A null allele of ILV5 suppresses transfer of mitochondrial DNA to the nucleus and displays synthetic interactions with yme2-4.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Secuencia de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Exodesoxirribonucleasas/metabolismo , Genes Fúngicos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mutación , Fenotipo , Saccharomyces cerevisiae/ultraestructura , Supresión Genética
3.
Gene ; 354: 37-42, 2005 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-15894435

RESUMEN

Mitochondrial compartments of the yeast Saccharomyces cerevisiae experience continual morphological alterations. Mitochondrial compartments of wild-type yeast, when observed using fluorescent markers, are usually found to be a network of extended tubular structures. However, a quantitative analysis of mitochondrial structures in a genetically homogenous population of wild-type yeast revealed that although the majority of individual yeast cells contained the expected extended network of mitochondrial tubules, a significant number of cells were found to exclusively contain condensed globular mitochondrial compartments or a mixture of extended and globular mitochondrial compartments. Additionally, this distribution of mitochondrial morphologies was found to be dependent upon the presence of mitochondrial DNA. Cells containing intact wild-type genomes or a deletion mutation of the COX2 gene gave rise to populations of yeast in which at least 80% of the cells contained only extended tubular networks of mitochondria. In isogenic yeast strains lacking mitochondrial DNA or containing a mitochondrial genome composed of reiterated COX2 sequences, only 30 to 40% of the cells in the population had exclusively extended mitochondrial networks, and the remaining cells in the population were composed of cells exhibiting either exclusively condensed or both condensed and extended mitochondrial profiles. We conclude that either a specific sequence element or a mitochondrially encoded gene product is required for promoting a pervasive distribution of extended tubular mitochondrial compartments.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/fisiología , Complejo IV de Transporte de Electrones/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
4.
Genetics ; 162(3): 1147-56, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12454062

RESUMEN

In the yeast Saccharomyces cerevisiae, certain mutant alleles of YME4, YME6, and MDM10 cause an increased rate of mitochondrial DNA migration to the nucleus, carbon-source-dependent alterations in mitochondrial morphology, and increased rates of mitochondrial DNA loss. While single mutants grow on media requiring mitochondrial respiration, any pairwise combination of these mutations causes a respiratory-deficient phenotype. This double-mutant phenotype allowed cloning of YME6, which is identical to MMM1 and encodes an outer mitochondrial membrane protein essential for maintaining normal mitochondrial morphology. Yeast strains bearing null mutations of MMM1 have altered mitochondrial morphology and a slow growth rate on all carbon sources and quantitatively lack mitochondrial DNA. Extragenic suppressors of MMM1 deletion mutants partially restore mitochondrial morphology to the wild-type state and have a corresponding increase in growth rate and mitochondrial DNA stability. A dominant suppressor also suppresses the phenotypes caused by a point mutation in MMM1, as well as by specific mutations in YME4 and MDM10.


Asunto(s)
ADN Mitocondrial , Mitocondrias/genética , Saccharomyces cerevisiae/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA