Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 27(15): 2435-49, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27280386

RESUMEN

The Vps13 protein family is highly conserved in eukaryotic cells. Mutations in human VPS13 genes result in a variety of diseases, such as chorea acanthocytosis (ChAc), but the cellular functions of Vps13 proteins are not well defined. In yeast, there is a single VPS13 orthologue, which is required for at least two different processes: protein sorting to the vacuole and sporulation. This study demonstrates that VPS13 is also important for mitochondrial integrity. In addition to preventing transfer of DNA from the mitochondrion to the nucleus, VPS13 suppresses mitophagy and functions in parallel with the endoplasmic reticulum-mitochondrion encounter structure (ERMES). In different growth conditions, Vps13 localizes to endosome-mitochondrion contacts and to the nuclear-vacuole junctions, indicating that Vps13 may function at membrane contact sites. The ability of VPS13 to compensate for the absence of ERMES correlates with its intracellular distribution. We propose that Vps13 is present at multiple membrane contact sites and that separation-of-function mutants are due to loss of Vps13 at specific junctions. Introduction of VPS13A mutations identified in ChAc patients at cognate sites in yeast VPS13 are specifically defective in compensating for the lack of ERMES, suggesting that mitochondrial dysfunction might be the basis for ChAc.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología , Mutación , Neuroacantocitosis , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
PLoS One ; 6(4): e19250, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21532989

RESUMEN

The adenine nucleotide translocase (ANT) mediates the exchange of ADP and ATP across the inner mitochondrial membrane. The human genome encodes multiple ANT isoforms that are expressed in a tissue-specific manner. Recently a novel germ cell-specific member of the ANT family, ANT4 (SLC25A31) was identified. Although it is known that targeted depletion of ANT4 in mice resulted in male infertility, the functional biochemical differences between ANT4 and other somatic ANT isoforms remain undetermined. To gain insight into ANT4, we expressed human ANT4 (hANT4) in yeast mitochondria. Unlike the somatic ANT proteins, expression of hANT4 failed to complement an AAC-deficient yeast strain for growth on media requiring mitochondrial respiration. Moreover, overexpression of hANT4 from a multi-copy plasmid interfered with optimal yeast growth. However, mutation of specific amino acids of hANT4 improved yeast mitochondrial expression and supported growth of the AAC-deficient yeast on non-fermentable carbon sources. The mutations affected amino acids predicted to interact with phospholipids, suggesting the importance of lipid interactions for function of this protein. Each mutant hANT4 and the somatic hANTs exhibited similar ADP/ATP exchange kinetics. These data define common and distinct biochemical characteristics of ANT4 in comparison to ANT1, 2 and 3 providing a basis for study of its unique adaptation to germ cells.


Asunto(s)
Translocasas Mitocondriales de ADP y ATP/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Humanos , Cinética , Ratones , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/genética , Modelos Moleculares , Datos de Secuencia Molecular , Plásmidos , Homología de Secuencia de Aminoácido
3.
Mitochondrion ; 11(4): 587-600, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21439406

RESUMEN

Hsc82 and Hsp82, the Hsp90 family proteins of yeast, are both required for fermentative growth at 37°C. Inactivation of either of the mitochondrial AAA proteases, Yme1 or Yta10/12, allows fermentative growth of hsc82∆ or hsp82∆ strains at 37°C. Genetic evidence indicates interaction of Hsc82/Hsp82 with the Yme1 and Yta10/Yta12 complexes in promoting F(1)F(o)-ATPase activity, with Hsc82 specifically required for F(1)-ATPase assembly. A previously reported mutation in Rpt3, one of the six ATPases of the proteasome, suppresses yme1∆ phenotypes and increases transcription of HSC82 but not HSP82. These genetic interactions describe a functional role for Hsp90 proteins in mitochondrial biogenesis.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteasas ATP-Dependientes/genética , Adenosina Trifosfatasas/genética , ADN Mitocondrial , Fermentación , Técnicas de Inactivación de Genes , Genotipo , Proteínas HSP90 de Choque Térmico/genética , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
4.
Genetics ; 179(3): 1285-99, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18562646

RESUMEN

AAC2 is one of three paralogs encoding mitochondrial ADP/ATP carriers in the yeast Saccharomyces cerevisiae, and because it is required for respiratory growth it has been the most extensively studied. To comparatively examine the relative functionality of Aac1, Aac2, and Aac3 in vivo, the gene encoding each isoform was expressed from the native AAC2 locus in aac1Delta aac3Delta yeast. Compared to Aac2, Aac1 exhibited reduced capacity to support growth of yeast lacking mitochondrial DNA or of yeast lacking the ATP/Mg-P(i) carrier, both conditions requiring ATP import into the mitochondrial matrix through the ADP/ATP carrier. Sixteen AAC1/AAC2 chimeric genes were constructed and analyzed to determine the key differences between residues or sections of Aac1 and Aac2. On the basis of the growth rate differences of yeast expressing different chimeras, the C1 and M2 loops of the ADP/ATP carriers contain divergent residues that are responsible for the difference(s) between Aac1 and Aac2. One chimeric gene construct supported growth on nonfermentable carbon sources but failed to support growth of yeast lacking mitochondrial DNA. We identified nine independent intragenic mutations in this chimeric gene that suppressed the growth phenotype of yeast lacking mitochondrial DNA, identifying regions of the carrier important for nucleotide exchange activities.


Asunto(s)
Translocasas Mitocondriales de ADP y ATP/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Codón , ADN Mitocondrial/metabolismo , Fusión Génica , Genes Supresores , Translocasas Mitocondriales de ADP y ATP/química , Datos de Secuencia Molecular , Mutación/genética , Fosfatos/metabolismo , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
5.
J Bioenerg Biomembr ; 39(2): 127-44, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17492370

RESUMEN

ATP1-111, a suppressor of the slow-growth phenotype of yme1Delta lacking mitochondrial DNA is due to the substitution of phenylalanine for valine at position 111 of the alpha-subunit of mitochondrial ATP synthase (Atp1p in yeast). The suppressing activity of ATP1-111 requires intact beta (Atp2p) and gamma (Atp3p) subunits of mitochondrial ATP synthase, but not the stator stalk subunits b (Atp4p) and OSCP (Atp5p). ATP1-111 and other similarly suppressing mutations in ATP1 and ATP3 increase the growth rate of wild-type strains lacking mitochondrial DNA. These suppressing mutations decrease the growth rate of yeast containing an intact mitochondrial chromosome on media requiring oxidative phosphorylation, but not when grown on fermentable media. Measurement of chronological aging of yeast in culture reveals that ATP1 and ATP3 suppressor alleles in strains that contain mitochondrial DNA are longer lived than the isogenic wild-type strain. In contrast, the chronological life span of yeast cells lacking mitochondrial DNA and containing these mutations is shorter than that of the isogenic wild-type strain. Spore viability of strains bearing ATP1-111 is reduced compared to wild type, although ATP1-111 enhances the survival of spores that lacked mitochondrial DNA.


Asunto(s)
Fermentación/fisiología , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Curr Genet ; 50(3): 173-82, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16850347

RESUMEN

A large number of gene products have been identified that either directly or indirectly alter the inheritance of mitochondrial DNA. In yeast, we have used a unique genetic screen based on the transfer of DNA from mitochondria to nucleus to identify nuclear-encoded gene products that are targeted to mitochondria and impact the stable inheritance of mitochondrial DNA. A specific allele of one of these genes, yme2-4, prevents even the low wild-type rate of mitochondrial DNA transfer to the nucleus and imparts significant temperature-sensitive and respiratory-growth defects. Intra- and extragenic suppressors of the yme2-4 growth phenotypes were isolated and analysis of these interacting genes reveals that both YME2 and its suppressors influence the structure and number of mitochondrial nucleoids. The yme2-4 allele decreases the average number of mtDNA nucleoids found in cells and the sensitivity of DNA in toluene-treated mitochondria to digestion by DNA exonuclease, effects reversed by intra- and extragenic suppressors. The extragenic suppressor, a missense allele of ILV5, encodes an enzyme of the branched-chain amino acid biosynthetic pathway that is also a component of mitochondrial nucleoids. A null allele of ILV5 suppresses transfer of mitochondrial DNA to the nucleus and displays synthetic interactions with yme2-4.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Secuencia de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Exodesoxirribonucleasas/metabolismo , Genes Fúngicos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mutación , Fenotipo , Saccharomyces cerevisiae/ultraestructura , Supresión Genética
7.
Eukaryot Cell ; 4(12): 2078-86, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16339725

RESUMEN

Eukaryotic cells require mitochondrial compartments for viability. However, the budding yeast Saccharomyces cerevisiae is able to survive when mitochondrial DNA suffers substantial deletions or is completely absent, so long as a sufficient mitochondrial inner membrane potential is generated. In the absence of functional mitochondrial DNA, and consequently a functional electron transport chain and F(1)F(o)-ATPase, the essential electrical potential is maintained by the electrogenic exchange of ATP(4-) for ADP(3-) through the adenine nucleotide translocator. An essential aspect of this electrogenic process is the conversion of ATP(4-) to ADP(3-) in the mitochondrial matrix, and the nuclear-encoded subunits of F(1)-ATPase are hypothesized to be required for this process in vivo. Deletion of ATP3, the structural gene for the gamma subunit of the F(1)-ATPase, causes yeast to quantitatively lose mitochondrial DNA and grow extremely slowly, presumably by interfering with the generation of an energized inner membrane. A spontaneous suppressor of this slow-growth phenotype was found to convert a conserved glycine to serine in the beta subunit of F(1)-ATPase (atp2-227). This mutation allowed substantial ATP hydrolysis by the F(1)-ATPase even in the absence of the gamma subunit, enabling yeast to generate a twofold greater inner membrane potential in response to ATP compared to mitochondria isolated from yeast lacking the gamma subunit and containing wild-type beta subunits. Analysis of the suppressing mutation by blue native polyacrylamide gel electrophoresis also revealed that the alpha(3)beta(3) heterohexamer can form in the absence of the gamma subunit.


Asunto(s)
Membranas Intracelulares/fisiología , Mitocondrias/fisiología , ATPasas de Translocación de Protón/genética , Adenosina Trifosfato/metabolismo , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Bovinos , Secuencia Conservada , ADN Mitocondrial/genética , Electroforesis en Gel de Poliacrilamida , Eliminación de Gen , Genes Fúngicos , Genes Supresores , Hidrólisis , Potenciales de la Membrana , Translocasas Mitocondriales de ADP y ATP/genética , Translocasas Mitocondriales de ADP y ATP/metabolismo , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Subunidades de Proteína/química , Subunidades de Proteína/genética , ATPasas de Translocación de Protón/deficiencia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Serina/metabolismo
8.
Gene ; 354: 37-42, 2005 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-15894435

RESUMEN

Mitochondrial compartments of the yeast Saccharomyces cerevisiae experience continual morphological alterations. Mitochondrial compartments of wild-type yeast, when observed using fluorescent markers, are usually found to be a network of extended tubular structures. However, a quantitative analysis of mitochondrial structures in a genetically homogenous population of wild-type yeast revealed that although the majority of individual yeast cells contained the expected extended network of mitochondrial tubules, a significant number of cells were found to exclusively contain condensed globular mitochondrial compartments or a mixture of extended and globular mitochondrial compartments. Additionally, this distribution of mitochondrial morphologies was found to be dependent upon the presence of mitochondrial DNA. Cells containing intact wild-type genomes or a deletion mutation of the COX2 gene gave rise to populations of yeast in which at least 80% of the cells contained only extended tubular networks of mitochondria. In isogenic yeast strains lacking mitochondrial DNA or containing a mitochondrial genome composed of reiterated COX2 sequences, only 30 to 40% of the cells in the population had exclusively extended mitochondrial networks, and the remaining cells in the population were composed of cells exhibiting either exclusively condensed or both condensed and extended mitochondrial profiles. We conclude that either a specific sequence element or a mitochondrially encoded gene product is required for promoting a pervasive distribution of extended tubular mitochondrial compartments.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/fisiología , Complejo IV de Transporte de Electrones/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
9.
Genetics ; 162(3): 1147-56, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12454062

RESUMEN

In the yeast Saccharomyces cerevisiae, certain mutant alleles of YME4, YME6, and MDM10 cause an increased rate of mitochondrial DNA migration to the nucleus, carbon-source-dependent alterations in mitochondrial morphology, and increased rates of mitochondrial DNA loss. While single mutants grow on media requiring mitochondrial respiration, any pairwise combination of these mutations causes a respiratory-deficient phenotype. This double-mutant phenotype allowed cloning of YME6, which is identical to MMM1 and encodes an outer mitochondrial membrane protein essential for maintaining normal mitochondrial morphology. Yeast strains bearing null mutations of MMM1 have altered mitochondrial morphology and a slow growth rate on all carbon sources and quantitatively lack mitochondrial DNA. Extragenic suppressors of MMM1 deletion mutants partially restore mitochondrial morphology to the wild-type state and have a corresponding increase in growth rate and mitochondrial DNA stability. A dominant suppressor also suppresses the phenotypes caused by a point mutation in MMM1, as well as by specific mutations in YME4 and MDM10.


Asunto(s)
ADN Mitocondrial , Mitocondrias/genética , Saccharomyces cerevisiae/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Genetics ; 162(4): 1595-604, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12524335

RESUMEN

Yme1p, an ATP-dependent protease localized in the mitochondrial inner membrane, is required for the growth of yeast lacking an intact mitochondrial genome. Specific dominant mutations in the genes encoding the alpha- and gamma-subunits of the mitochondrial F(1)F(0)-ATPase suppress the slow-growth phenotype of yeast that simultaneously lack Yme1p and mitochondrial DNA. F(1)F(0)-ATPase activity is reduced in yeast lacking Yme1p and is restored in yme1 strains bearing suppressing mutations in F(1)-ATPase structural genes. Mitochondria isolated from yme1 yeast generated a membrane potential upon the addition of succinate, but unlike mitochondria isolated either from wild-type yeast or from yeast bearing yme1 and a suppressing mutation, were unable to generate a membrane potential upon the addition of ATP. Nuclear-encoded F(0) subunits accumulate in yme1 yeast lacking mitochondrial DNA; however, deletion of genes encoding those subunits did not suppress the requirement of yme1 yeast for intact mitochondrial DNA. In contrast, deletion of INH1, which encodes an inhibitor of the F(1)F(0)-ATPase, partially suppressed the growth defect of yme1 yeast lacking mitochondrial DNA. We conclude that Yme1p is in part responsible for assuring sufficient F(1)F(0)-ATPase activity to generate a membrane potential in mitochondria lacking mitochondrial DNA and propose that Yme1p accomplishes this by catalyzing the turnover of protein inhibitors of the F(1)F(0)-ATPase.


Asunto(s)
ADN de Hongos/genética , ADN Mitocondrial/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteasas ATP-Dependientes , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Eliminación de Gen , Potenciales de la Membrana , Mitocondrias/metabolismo , Fenotipo , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA