Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781517

RESUMEN

This article describes research that investigated the ability of a carbon nanotube (CNT) sensor to detect and monitor fatigue crack initiation and propagation in metal structures. The sensor consists of a nonwoven carrier fabric with a thin film of CNT that is bonded to the surface of a structure using an epoxy adhesive. The carrier fabric enables the sensor to be easily applied over large areas with complex geometries. Furthermore, the distributed nature of the sensor improves the probability of detecting crack initiation and enables monitoring of crack propagation over time. Piezoresistivity of the sensor enables strains to be monitored in real time and the sensor, which is designed to fragment as fatigue cracks propagate, directly measures crack growth through permanent changes in resistance. The following laboratory tests were conducted to evaluate the performance of the sensor: (1) continuous crack propagation monitoring, (2) potential false positive evaluation under near-threshold crack propagation conditions, and (3) crack re-initiation detection at a crack-stop hole, which is a commonly used technique to arrest fatigue cracks. Real-time sensor measurements and post-mortem fractography show that a distinguishable resistance change of the sensor occurs due to fatigue crack propagation that can be quantitatively related to crack length. The sensor does not show false positive responses when the crack does not propagate, which is a drawback of many other fatigue sensors. The sensor is also shown to be remarkably sensitive to detecting crack re-initiation.

2.
ACS Appl Mater Interfaces ; 12(33): 37722-37731, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814412

RESUMEN

With the rapid development of nanomanufacturing, scaling up of nanomaterials requires advanced manufacturing technology to composite nanomaterials with disparate materials (ceramics, metals, and polymers) to achieve hybrid properties and coupling performances for practical applications. Attempts to assemble nanomaterials onto macroscopic materials are often accompanied by the loss of exceptional nanoscale properties during the fabrication process, which is mainly due to the poor contacts between carbon nanomaterials and macroscopic bulk materials. In this work, we proposed a novel cross-scale manufacturing concept to process disparate materials in different length scales and successfully demonstrated an electrothermal shock approach to process the nanoscale material (e.g., carbon nanotubes) and macroscale (e.g., glass fiber) with good bonding and excellent mechanical property for emerging applications. The excellent performance and potentially lower cost of the electrothermal shock technology offers a continuous, ultrafast, energy-efficient, and roll-to-roll process as a promising heating solution for cross-scale manufacturing.

3.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605296

RESUMEN

As composites are used increasingly in structural components, novel techniques for detecting micro-scale damage are required. Their nanoscale size and high aspect ratio allow carbon nanotubes to create electrically conductive pathways that enable sensing. In this work, carbon nanotubes are deposited onto glass fabric using electrophoretic deposition to create hierarchical composites. Polyethylenimine functionalized carbon nanotubes are deposited from an aqueous dispersion using an electric field. Symmetric cross-ply composites are investigated as a model system to demonstrate the ability to detect incipient damage and transverse microcracks. The specimens are subjected to tensile loading, and a resistance increase is observed because of two key mechanisms-a reversible change in nanotube-nanotube tunneling gaps due to elastic straining of the network and a permanent severing of paths in the conducting network due to formation of transverse cracks in the 90° plies. By analyzing the electrical response, the damage state can be identified. Acoustic emission sensors are used to validate the results. The strength and Young's modulus of the composites with integrated carbon nanotubes are similar to the control specimens. Crack density measurements using edge replication reveal that transverse cracking can be suppressed, demonstrating multi-functionality with improved damage tolerance and integrated sensing.

4.
Langmuir ; 36(13): 3425-3438, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32163292

RESUMEN

Boron nitride nanotubes (BNNTs) represent a relatively new class of materials that provides alternative electrical and thermal properties to the carbon analogue. The high chemical and thermal stability and large band gap combined with high electrical resistance make BNNTs desirable in several thin-film applications. In this study, stable BNNT and hexagonal boron nitride (hBN) particle dispersions have been developed using environmentally friendly advanced oxidation processing (AOP) that can be further modified for electrophoretic deposition (EPD) to produce thin films. The characterization of the dispersions has revealed how the hydroxyl radicals produced in AOP react with BNNT/hBN and contaminant boron nanoparticles (BNPs). While the radicals remove the carbon contaminant present on BNNT/hBN and increase dispersion stability, they also oxidize the BNPs and the boron oxide produced, which, conversely, reduces the dispersion stability. The use of high- or low-powered ultrasonication in combination with the AOP affects the rate of the competing reactions, with low-powered sonication and AOP providing the best combination for producing stable dispersions with high concentrations. BNNT/hBN dispersions were functionalized with polyethyleneimine to facilitate EPD, where films of several micrometer thickness were readily deposited onto stainless steel and glass-fiber fabrics. BNNT/hBN films produced on glass fabrics by EPD exhibited a consistent through-thickness macroporosity that was facilitated by platelet and nanotube stacking. The film macroporosity present on the coated fabrics was suitable for use as separator layers in supercapacitors and provided improved device robustness with a minimal impact on electrochemical performance.

5.
ACS Appl Mater Interfaces ; 11(51): 48370-48380, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31769954

RESUMEN

Flexible pressure sensors are of broad interest for applications including human-machine interfaces, wearable electronics, and object/motion detection. However, complexities associated with constituent materials, fabrication processes, sensing mechanisms, and hardwiring often hinder the large-scale applications of using high performance pressure sensors reported in the literature. Here we demonstrate a large-area, highly flexible, conformable, and mechanically robust pressure sensor using a silicone elastomer with an embedded nonwoven textile carrier coated with carbon nanotubes. The selected silicone polymer allows through-thickness deformability of the sensor while the high modulus textile carrier ensures in-plane stiffness and stability. The sensor has an initial electrical conductivity of 4.4 ± 0.38 S/m and is fabricated using a straightforward dip coating and polymer infusion process and can be easily scaled-up for large-scale applications. On the basis of its hierarchical composite structure, this piezoresistive pressure sensor possesses extremely high resilience under compression, a repeatable monotonic positive pressure correlation, and an ultrawide elastic working range (5.5 ± 0.5 MPa) that can be segmentally linearized. A true two-dimensional modality for spatial pressure mapping is realized by utilizing electrical impedance tomography (EIT) and demonstrated to yield conductivity maps that can estimate the location, shape, and amplitude of both localized and distributed pressure with simple contact areas.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32166225

RESUMEN

Carbon nanotube (CNT) grafted glass fiber reinforced epoxy nanocomposites (GFRP) present a range of stiffnesses (MPa to GPa) and length scales (µm to nm) at the fiber-matrix interface. The contribution of functionalized CNT networks to the local and bulk polymer dynamics is studied here by using a combination of torsion dynamical mechanical thermal analysis (DMTA), positron annihilation lifetime spectroscopy (PALS), and neutron scattering (NS) measurements. DMTA measurements highlight a reduction in the storage modulus (G') in the rubbery region and an asymmetric broadening of the loss modulus (G″) peak in the α-transition region. NS measurements show a suppressed hydrogen mean-square displacement (MSD) in the presence of glass fibers but a higher hydrogen MSD after grafting functionalized CNTs onto fiber surfaces. PALS measurements show greater free volume characteristics in the presence of the functionalized CNT modified composites, supporting the view that these interface layers increase polymer mobility. While NS and DMTA are sensitive to different modes of chain dynamics, the localization of functionalized nanotubes at the fiber interface is found to affect the distribution of polymer relaxation modes without significantly altering the thermally activated relaxation processes.

7.
ACS Sens ; 3(7): 1276-1282, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29943577

RESUMEN

A scalable electrophoretic deposition (EPD) approach is used to create novel thin, flexible, and lightweight carbon nanotube-based textile pressure sensors. The pressure sensors can be produced using an extensive variety of natural and synthetic fibers. These piezoresistive sensors are sensitive to pressures ranging from the tactile range (<10 kPa), the body weight range (∼500 kPa), and very high pressures (∼40 MPa). The EPD technique enables the creation of a uniform carbon nanotube-based nanocomposite coating, in the range of 250-750 nm thick, of polyethyleneimine (PEI) functionalized carbon nanotubes on nonconductive fibers. In this work, nonwoven aramid fibers are coated by EPD onto a backing electrode followed by film formation onto the fibers creating a conductive network. The electrically conductive nanocomposite coating is firmly bonded to the fiber surface and shows piezoresistive electrical/mechanical coupling. The pressure sensor displays a large in-plane change in electrical conductivity with applied out-of-plane pressure. In-plane conductivity change results from fiber/fiber contact as well as the formation of a sponge-like piezoresistive nanocomposite "interphase" between the fibers. The resilience of the nanocomposite interphase enables sensing of high pressures without permanent changes to the sensor response, showing high repeatability.


Asunto(s)
Técnicas Biosensibles/instrumentación , Nanocompuestos/química , Nanotubos de Carbono/química , Polietileneimina/química , Presión , Conductividad Eléctrica , Diseño de Equipo , Humanos , Nanocompuestos/ultraestructura , Nanotubos de Carbono/ultraestructura , Textiles/análisis , Tacto , Dispositivos Electrónicos Vestibles
8.
J Vis Exp ; (123)2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28605378

RESUMEN

Functionalization of carbon nanomaterials is often a critical step that facilitates their integration into larger material systems and devices. In the as-received form, carbon nanomaterials, such as carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs), may contain large agglomerates. Both agglomerates and impurities will diminish the benefits of the unique electrical and mechanical properties offered when CNTs or GNPs are incorporated into polymers or composite material systems. Whilst a variety of methods exist to functionalize carbon nanomaterials and to create stable dispersions, many the processes use harsh chemicals, organic solvents, or surfactants, which are environmentally unfriendly and may increase the processing burden when isolating the nanomaterials for subsequent use. The current research details the use of an alternative, environmentally friendly technique for functionalizing CNTs and GNPs. It produces stable, aqueous dispersions free of harmful chemicals. Both CNTs and GNPs can be added to water at concentrations up to 5 g/L and can be recirculated through a high-powered ultrasonic cell. The simultaneous injection of ozone into the cell progressively oxidizes the carbon nanomaterials, and the combined ultrasonication breaks down agglomerates and immediately exposes fresh material for functionalization. The prepared dispersions are ideally suited for the deposition of thin films onto solid substrates using electrophoretic deposition (EPD). CNTs and GNPs from the aqueous dispersions can be readily used to coat carbon- and glass-reinforcing fibers using EPD for the preparation of hierarchical composite materials.


Asunto(s)
Nanoestructuras/química , Nanotubos de Carbono/química , Polímeros/química , Ultrasonido/métodos
9.
ACS Appl Mater Interfaces ; 8(2): 1501-10, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26699906

RESUMEN

The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 µm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 µm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation.

10.
Sensors (Basel) ; 15(7): 17728-47, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26197323

RESUMEN

This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity.

11.
ACS Appl Mater Interfaces ; 5(6): 2022-32, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23379418

RESUMEN

Carbon nanotube/glass fiber hierarchical composite structures have been produced using an electrophoretic deposition (EPD) approach for integrating the carbon nanotubes (CNTs) into unidirectional E-glass fabric, followed by infusion of an epoxy polymer matrix. The resulting composites show a hierarchical structure, where the structural glass fibers, which have diameters in micrometer range, are coated with CNTs having diameters around 10-20 nm. The stable aqueous dispersions of CNTs were produced using a novel ozonolysis and ultrasonication technique that results in dispersion and functionalization in a single step. Ozone-oxidized CNTs were then chemically reacted with a polyethyleneimine (PEI) dendrimer to enable cathodic EPD and promote adhesion between the CNTs and the glass-fiber substrate. Deposition onto the fabric was accomplished by placing the fabric in front of the cathode and applying a direct current (DC) field. Microscopic characterization shows the integration of CNTs throughout the thickness of the glass fabric, where individual fibers are coated with CNTs and a thin film of CNTs also forms on the fabric surfaces. Within the composite, networks of CNTs span between adjacent fibers, and the resulting composites exhibit good electrical conductivity and considerable increases in the interlaminar shear strength, relative to fiber composites without integrated CNTs. Mechanical, chemical and morphological characterization of the coated fiber surfaces reveal interface/interphase modification resulting from the coating is responsible for the improved mechanical and electrical properties. The CNT-coated glass-fiber laminates also exhibited clear changes in electrical resistance as a function of applied shear strain and enables self-sensing of the transition between elastic and plastic load regions.

12.
Nanotechnology ; 19(21): 215713, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21730592

RESUMEN

Developments in producing nanostructured materials with novel properties have opened up new opportunities in which unique functionality can be added to existing material systems. As advanced fiber composites are utilized more frequently in primary structural applications there is a key challenge to enhance the performance and reliability while reducing maintenance. As a consequence there is tremendous scientific and technical interest in the development of techniques for monitoring the health of composite structures where real-time sensing can provide information on the state of microstructural damage. In this research we utilize electrically conductive networks of carbon nanotubes as in situ sensors for detecting damage accumulation during cyclic loading of advanced fiber composites. Here we show that, by combining load and strain measurements in real-time with direct current electrical resistance measurements of the carbon nanotube network, insight can be gained toward the evolution and accumulation of damage. The resistance/strain relations show substantial hysteresis due to the formation and opening/closing of cracks during cyclic loading. Through interpreting the resistance response curves we identify a parameter that may be utilized as a quantitative measure of damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...